Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Aesthet Surg J Open Forum ; 5: ojad045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333709

RESUMEN

Background: Electromagnetic muscle stimulation (EMMS) is an effective, well-tolerated noninvasive body contouring treatment for strengthening, toning, and firming the abdomen. Objectives: In this study, functional changes following abdominal EMMS treatment wereevaluated. Methods: In this prospective, open-label study, adults received 8 abdominal EMMS treatments (2 treatments on nonconsecutive days/week over 4 weeks). Follow-ups occurred 1 month (primary endpoint), 2, and 3 months postfinal treatment. Effectiveness endpoints included improvements from baseline on Body Satisfaction Questionnaire (BSQ; primary endpoint), core strength (timed plank test), abdominal endurance (curl-up test), and Subject Experience Questionnaire (SEQ). Safety was evaluated throughout. Results: Sixteen participants (68.8% female) were enrolled, with a mean age of 39.3 years and a mean BMI of 24.4 kg/m2; 14 participants completed the study per protocol. Mean BSQ scores were significantly improved from baseline (27.9) to the 1-month follow-up (36.6; P < .05). Core strength and abdominal endurance were significantly greater at the 1-, 2-, and 3-month posttreatment time points than at baseline (P < .05). Frequently cited reasons for seeking EMMS treatment included a desire to feel stronger (100%; n = 14/14) and to improve athletic performance (100%; n = 14/14). SEQ responses 3 months posttreatment showed that most participants reported feeling stronger (92.9%) and motivated to receive additional EMMS treatments (100%) and work out to maintain treatment results (100%). The majority of participants (>78%) reported being "satisfied" or "very satisfied" with abdominal treatment 1 month posttreatment. One device- and/or procedure-related adverse event of menstrual cycle irregularity was reported in 1 participant and was mild in severity. Conclusions: EMMS treatment of the abdomen is associated with functional strength improvements and high patient satisfaction.

2.
Int J Sports Physiol Perform ; 18(4): 335-346, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36848906

RESUMEN

Scientific interest in pacing goes back >100 years. Contemporary interest, both as a feature of athletic competition and as a window into understanding fatigue, goes back >30 years. Pacing represents the pattern of energy use designed to produce a competitive result while managing fatigue of different origins. Pacing has been studied both against the clock and during head-to-head competition. Several models have been used to explain pacing, including the teleoanticipation model, the central governor model, the anticipatory-feedback-rating of perceived exertion model, the concept of a learned template, the affordance concept, the integrative governor theory, and as an explanation for "falling behind." Early studies, mostly using time-trial exercise, focused on the need to manage homeostatic disturbance. More recent studies, based on head-to-head competition, have focused on an improved understanding of how psychophysiology, beyond the gestalt concept of rating of perceived exertion, can be understood as a mediator of pacing and as an explanation for falling behind. More recent approaches to pacing have focused on the elements of decision making during sport and have expanded the role of psychophysiological responses including sensory-discriminatory, affective-motivational, and cognitive-evaluative dimensions. These approaches have expanded the understanding of variations in pacing, particularly during head-to-head competition.


Asunto(s)
Deportes , Humanos , Deportes/fisiología , Motivación , Percepción , Fatiga , Psicofisiología
3.
Int J Sports Physiol Perform ; 17(5): 687-693, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35158324

RESUMEN

INTRODUCTION: The relationship between the percentage of a fatiguing ambulatory task completed and rating of perceived exertion (RPE) appears to be linear and scalar, with a relatively narrow "window." Recent evidence has suggested that a similar relationship may exist for muscularly demanding tasks. METHODS: To determine whether muscularly demanding tasks fit within this "ambulatory window," we tested resistance-trained athletes performing bench press and leg press with different loadings predicted to allow 5, 10, 20, and 30 repetitions and measured RPE (category ratio scale) at the end of the concentric action for each repetition. RESULTS: There was a regular, and strongly linear, pattern of growth of RPE for both bench press (r = .89) and leg press (r = .90) during the tasks that allowed 5.2 (1.2), 11.6 (1.9), 22.7 (2.0), and 30.8 (3.2) repetitions for bench press and 5.5 (1.5), 11.4 (1.6), 20.2 (3.0), and 32.4 (4.2) repetitions for leg press, respectively. CONCLUSIONS: The path of the RPE growth versus percentage task fit within the window evident for ambulatory tasks. The results suggest that the RPE versus percentage task completed relationship is scalar, relatively linear, and apparently independent of exercise mode.


Asunto(s)
Esfuerzo Físico , Entrenamiento de Fuerza , Atletas , Ejercicio Físico , Humanos , Fatiga Muscular , Entrenamiento de Fuerza/métodos , Levantamiento de Peso
4.
J Funct Morphol Kinesiol ; 6(3)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34449668

RESUMEN

Exercise prescription based on exercise test results is complicated by the need to downregulate the absolute training intensity to account for cardiovascular drift in order to achieve a desired internal training load. We tested a recently developed generalized model to perform this downregulation using metabolic equivalents (METs) during exercise testing and training. A total of 20 healthy volunteers performed an exercise test to define the METs at 60, 70, and 80% of the heart rate (HR) reserve and then performed randomly ordered 30 min training bouts at absolute intensities predicted by the model to achieve these levels of training intensity. The training HR at 60 and 70% HR reserve, but not 80%, was significantly less than predicted from the exercise test, although the differences were small. None of the ratings of perceived exertion (RPE) values during training were significantly different than predicted. There was a strong overall correlation between predicted and observed HR (r = 0.88) and RPE (r = 0.52), with 92% of HR values within ±10 bpm and 74% of RPE values within ±1 au. We conclude that the generalized functional translation model is generally adequate to allow the generation of early absolute training loads that lead to desired internal training loads.

5.
J Funct Morphol Kinesiol ; 6(2)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198628

RESUMEN

Walking tests, such as the 6-min walk test (6MWT), are popular methods of estimating peak oxygen uptake (VO2peak) in clinical populations. However, the strength of the distance vs. VO2peak relationship is not strong, and there are no equations for estimating ventilatory threshold (VT), which is important for training prescription and prognosis. Since the 6MWT is often limited by walking mechanics, prediction equations that include simple additional predictors, such as the terminal rating of perceived exertion (RPE), hold the potential for improving the prediction of VO2max and VT. Therefore, this study was designed to develop equations for predicting VO2peak and VT from performance during the 6MWT, on the basis of walking performance and terminal RPE. Clinically stable patients in a cardiac rehabilitation program (N = 63) performed the 6MWT according to the American Thoracic Society guidelines. At the end of each walk, the subject provided their terminal RPE on a 6-20 Borg scale. Each patient also performed a maximal incremental treadmill test with respiratory gas exchange to measure VO2peak and VT. There was a good correlation between VO2peak and 6MWT distance (r = 0.80) which was improved by adding the terminal RPE in a multiple regression formula (6MWT + RPE, R2 = 0.71, standard error of estimate, SEE = 1.3 Metabolic Equivalents (METs). The VT was also well correlated with walking performance, 6MWT distance (r = 0.80), and was improved by the addition of terminal RPE (6MWT + RPE, R2 = 0.69, SEE = 0.95 METs). The addition of terminal RPE to 6MWT distance improved the prediction of maximal METs and METs at VT, which may have practical applications for exercise prescription.

6.
J Funct Morphol Kinesiol ; 6(2)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071525

RESUMEN

Exercise training is an important component of clinical exercise programs. Although there are recognized guidelines for the amount of exercise to be accomplished (≥70,000 steps per week or ≥150 min per week at moderate intensity), there is virtually no documentation of how much exercise is actually accomplished in contemporary exercise programs. Having guidelines without evidence of whether they are being met is of limited value. We analyzed both the weekly step count and the session rating of perceived exertion (sRPE) of patients (n = 26) enrolled in a community clinical exercise (e.g., Phase III) program over a 3-week reference period. Step counts averaged 39,818 ± 18,612 per week, with 18% of the steps accomplished in the program and 82% of steps accomplished outside the program. Using the sRPE method, inside the program, the patients averaged 162.4 ± 93.1 min per week, at a sRPE of 12.5 ± 1.9 and a frequency of 1.8 ± 0.7 times per week, for a calculated exercise load of 2042.5 ± 1244.9 AU. Outside the program, the patients averaged 144.9 ± 126.4 min, at a sRPE of 11.8 ± 5.8 and a frequency of 2.4 ± 1.5 times per week, for a calculated exercise load of 1723.9 ± 1526.2 AU. The total exercise load using sRPE was 266.4 ± 170.8 min per week, at a sRPE of 12.6 ± 3.8, and frequency of 4.2 ± 1.1 times per week, for a calculated exercise load of 3359.8 ± 2145.9 AU. There was a non-linear relationship between steps per week and the sRPE derived training load, apparently attributable to the amount of non-walking exercise accomplished in the program. The results suggest that patients in a community clinical exercise program are achieving American College of Sports Medicine guidelines, based on the sRPE method, but are accomplishing less steps than recommended by guidelines.

7.
Artículo en Inglés | MEDLINE | ID: mdl-33669693

RESUMEN

The aerobic cost of running (CR), an important determinant of running performance, is usually measured during constant speed running. However, constant speed does not adequately reflect the nature of human locomotion, particularly competitive races, which include stochastic variations in pace. Studies in non-athletic individuals suggest that stochastic variations in running velocity produce little change in CR. This study was designed to evaluate whether variations in running speed influence CR in trained runners. Twenty competitive runners (12 m, VO2max = 73 ± 7 mL/kg; 8f, VO2max = 57 ± 6 mL/kg) ran four 6-minute bouts at an average speed calculated to require ~90% ventilatory threshold (VT) (measured using both v-slope and ventilatory equivalent). Each interval was run with minute-to-minute pace variation around average speed. CR was measured over the last 2 min. The coefficient of variation (CV) of running speed was calculated to quantify pace variations: ±0.0 m∙s-1 (CV = 0%), ±0.04 m∙s-1 (CV = 1.4%), ±0.13 m∙s-1(CV = 4.2%), and ±0.22 m∙s-1(CV = 7%). No differences in CR, HR, or blood lactate (BLa) were found amongst the variations in running pace. Rating of perceived exertion (RPE) was significantly higher only in the 7% CV condition. The results support earlier studies with short term (3s) pace variations, that pace variation within the limits often seen in competitive races did not affect CR when measured at running speeds below VT.


Asunto(s)
Consumo de Oxígeno , Carrera , Correlación de Datos , Humanos , Locomoción
8.
Artículo en Inglés | MEDLINE | ID: mdl-33670775

RESUMEN

During competitive events, the pacing strategy depends upon how an athlete feels at a specific moment and the distance remaining. It may be expressed as the Hazard Score (HS) with momentary HS being shown to provide a measure of the likelihood of changing power output (PO) within an event and summated HS as a marker of how difficult an event is likely to be perceived to be. This study aimed to manipulate time trial (TT) starting strategies to establish whether the summated HS, as opposed to momentary HS, will improve understanding of performance during a simulated cycling competition. Seven subjects (peak PO: 286 ± 49.7 W) performed two practice 10-km cycling TTs followed by three 10-km TTs with imposed PO (±5% of mean PO achieved during second practice TT and a self-paced TT). PO, rating of perceived exertion (RPE), lactate, heart rate (HR), HS, summated HS, session RPE (sRPE) were collected. Finishing time and mean PO for self-paced (time: 17.51 ± 1.41 min; PO: 234 ± 62.6 W), fast-start (time: 17.72 ± 1.87 min; PO: 230 ± 62.0 W), and slow-start (time: 17.77 ± 1.74 min; PO: 230 ± 62.7) TT were not different. There was a significant interaction between each secondary outcome variable (PO, RPE, lactate, HR, HS, and summated HS) for starting strategy and distance. The evolution of HS reflected the imposed starting strategy, with a reduction in PO following a fast-start, an increased PO following a slow-start with similar HS during the last part of all TTs. The summated HS was strongly correlated with the sRPE of the TTs (r = 0.88). The summated HS was higher with a fast start, indicating greater effort, with limited time advantage. Thus, the HS appears to regulate both PO within a TT, but also the overall impression of the difficulty of a TT.


Asunto(s)
Ciclismo , Fatiga , Atletas , Frecuencia Cardíaca , Humanos , Consumo de Oxígeno , Esfuerzo Físico , Factores de Tiempo
9.
Int J Sports Physiol Perform ; 16(5): 612-621, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508782

RESUMEN

The session rating of perceived exertion (sRPE) method was developed 25 years ago as a modification of the Borg concept of rating of perceived exertion (RPE), designed to estimate the intensity of an entire training session. It appears to be well accepted as a marker of the internal training load. Early studies demonstrated that sRPE correlated well with objective measures of internal training load, such as the percentage of heart rate reserve and blood lactate concentration. It has been shown to be useful in a wide variety of exercise activities ranging from aerobic to resistance to games. It has also been shown to be useful in populations ranging from patients to elite athletes. The sRPE is a reasonable measure of the average RPE acquired across an exercise session. Originally designed to be acquired ∼30 minutes after a training bout to prevent the terminal elements of an exercise session from unduly influencing the rating, sRPE has been shown to be temporally robust across periods ranging from 1 minute to 14 days following an exercise session. Within the training impulse concept, sRPE, or other indices derived from sRPE, has been shown to be able to account for both positive and negative training outcomes and has contributed to our understanding of how training is periodized to optimize training outcomes and to understand maladaptations such as overtraining syndrome. The sRPE as a method of monitoring training has the advantage of extreme simplicity. While it is not ideal for the precise recording of the details of the external training load, it has large advantages relative to evaluating the internal training load.


Asunto(s)
Atletas , Esfuerzo Físico , Ejercicio Físico , Frecuencia Cardíaca , Humanos , Ácido Láctico
10.
Artículo en Inglés | MEDLINE | ID: mdl-33498385

RESUMEN

Although cycling class intensity can be modified by changing interval intensity sequencing, it has not been established whether the intensity order can alter physiological and perceptual responses. Therefore, this study aimed to determine the effects of interval intensity sequencing on energy expenditure (EE), physiological markers, and perceptual responses during indoor cycling. Healthy volunteers (10 males = 20.0 ± 0.8years; 8 females = 21.3 ± 2.7years) completed three randomly ordered interval bouts (mixed pyramid-MP, ascending intervals-AI, descending intervals-DI) including three 3-min work bouts at 50%, 75%, and 100% of peak power output (PPO) and three 3-min recovery periods at 25% PPO. Heart rate (HR) and oxygen consumption (VO2) were expressed as percentages of maximal HR (%HRmax) and VO2 (%VO2max). EE was computed for both the work bout and for the 5-min recovery period. Session Rating of Perceived Exertion (sRPE) and Exercise Enjoyment Scale (EES) were recorded. No differences emerged for % HRmax (MP = 73.3 ± 6.1%; AI = 72.1 ± 4.9%; DI = 71.8 ± 4.5%), % VO2max (MP = 51.8 ± 4.6%; AI = 51.4 ± 3.9%; DI = 51.3 ± 4.5%), EE (MP = 277.5 ± 39.9 kcal; AI = 275.8 ± 39.4 kcal; DI = 274.9 ± 42.1 kcal), EES (MP = 4.9 ± 1.0; AI = 5.3 ± 1.1; DI = 4.9 ± 0.9), and sRPE (MP = 4.9 ± 1.0; AI = 5.3 ± 1.1; DI = 4.9 ± 0.9). EE during recovery was significantly (p < 0.005) lower after DI (11.9 ± 3.2 kcal) with respect to MP (13.2 ± 2.5 kcal) and AI (13.3 ± 2.5 kcal). Although lower EE was observed during recovery in DI, interval intensity sequencing does not affect overall EE, physiological markers, and perceptual responses.


Asunto(s)
Metabolismo Energético , Consumo de Oxígeno , Ejercicio Físico , Prueba de Esfuerzo , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Esfuerzo Físico
11.
J Funct Morphol Kinesiol ; 5(1)2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33467231

RESUMEN

Rating of perceived exertion (RPE) and session RPE (sRPE) are reliable tools for predicting exercise intensity and are alternatives to more technological and physiological measurements, such as blood lactate (HLa) concentration, oxygen consumption and heart rate (HR). As sRPE may also convey some insights into accumulated fatigue, the purpose of this study was to examine the effects of progressive fatigue in response to heavier-than-normal training on sRPE, with absolute training intensity held constant, and determine its validity as marker of fatigue. Twelve young adults performed eight interval workouts over a two-week period. The percentage of maximal HR (%HRmax), HLa, RPE and sRPE were measured for each session. The HLa/RPE ratio was calculated as an index of fatigue. Multilevel regression analysis showed significant differences for %HRmax (p = 0.004), HLa concentration (p = 0.0001), RPE (p < 0.0001), HLa/RPE ratio (p = 0.0002) and sRPE (p < 0.0001) across sessions. Non-linear regression analysis revealed a very large negative relationship between HLa/RPE ratio and sRPE (r = -0.70, p < 0.0001). These results support the hypothesis that sRPE is a sensitive tool that provides information on accumulated fatigue, in addition to training intensity. Exercise scientists without access to HLa measurements may now be able to gain insights into accumulated fatigue during periods of increased training by using sRPE.

12.
J Funct Morphol Kinesiol ; 5(3)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-33467278

RESUMEN

Although there is evidence supporting the benefit of regular exercise, and recommendations about exercise and physical activity, the process of individually prescribing exercise following exercise testing is more difficult. Guidelines like % heart rate (HR) reserve (HRR) require an anchoring maximal test and do not always provide a homogenous training experience. When prescribing HR on the basis of % HRR, rating of perceived exertion or Talk Test, cardiovascular/perceptual drift during sustained exercise makes prescription of the actual workload difficult. To overcome this issue, we have demonstrated a strategy for "translating" exercise test responses to steady state exercise training on the basis of % HRR or the Talk Test that appeared adequate for individuals ranging from cardiac patients to athletes. However, these methods depended on the nature of the exercise test details. In this viewpoint, we combine these data with workload expressed as Metabolic Equivalent Task (METs). We demonstrate that there is a regular stepdown between the METs during training to achieve the same degree of homeostatic disturbance during testing. The relationship was linear, was highly-correlated (r = 0.89), and averaged 71.8% (Training METs/Test METs). We conclude that it appears possible to generate a generalized approach to correctly translate exercise test responses to exercise training.

13.
Int J Sports Physiol Perform ; 15(3): 437-440, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31188690

RESUMEN

BACKGROUND: Pacing studies suggest the distribution of effort for optimizing performance. Cross-sectional studies of 1-mile world records (WRs) suggest that WR progression includes a smaller coefficient of variation of velocity. PURPOSE: This study evaluates whether intraindividual pacing used by elite runners to break their own WR (1 mile, 5 km, and 10 km) is related to the evolution of pacing strategy. We provide supportive data from analysis in subelite runners. METHODS: Men's WR performances (with 400-m or 1-km splits) in 1 mile, 5 km, and 10 km were retrieved from the IAAF database (from 1924 to present). Data were analyzed relative to pacing pattern when a runner improved their own WR. Similar analyses are presented for 10-km performance in subelite runners before and after intensified training. RESULTS: WR performance was improved in 1 mile (mean [SD]: 3:59.4 [11.2] to 3:57.2 [8.6]), 5 km (13:27 [0:33] to 13:21 [0:33]), and 10 km (28:35 [1:27] to 28:21 [1:21]). The average coefficient of variation did not change in the 1 mile (3.4% [1.8%] to 3.6% [1.6%]), 5 km (2.4% [0.9%] to 2.2% [0.8%]), or 10 km (1.4% [0.1%] to 1.5% [0.6%]) with improved WR. When velocity was normalized to the percentage mean velocity for each race, the pacing pattern was almost identical. Very similar patterns were observed in subelite runners in the 10 km. When time improved from 49:20 (5:30) to 45:56 (4:58), normalized velocity was similar, terminal RPE increased (8.4 [1.6] to 9.1 [0.8]), coefficient of variation was unchanged (4.4% [1.1%] to 4.8% [2.1%]), and VO2max increased (49.8 [7.4] to 55.3 [8.8] mL·min-1·kg-1). CONCLUSION: The results suggest that when runners break their own best performances, they employ the same pacing pattern, which is different from when WRs are improved in cross-sectional data.

14.
Int J Sports Physiol Perform ; 15(2): 292-294, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31172830

RESUMEN

PURPOSE: Although the session rating of perceived exertion (sRPE) is primarily a marker of internal training load (TL), it may be sensitive to external TL determining factors, such as duration and volume. Thus, sRPE could provide further information on accumulated fatigue not available from markers of internal TL. Therefore, the purpose of this study was to investigate sRPE during heavy training bouts at relatively constant intensity. METHODS: Eleven university swimmers performed a high-volume training session consisting of 4 × 10 × 100-yd (4 × 10 × 91.4 m). Repetition lap time and heart rate were measured for each repetition and averaged for each set. Blood lactate concentration was measured after each set. At the end of each set, a 10-minute rest period was allowed, during which sRPE values were obtained, as if the training bout had ended. RESULTS: There were no differences between sets for lap time (P = .096), heart rate (P = .717), and blood lactate concentration (P = .466), suggesting that the subjects were working at the same external and internal intensity. There was an increase (P = .0002) in sRPE between sets (first 4 [1.2], second 5 [1.3], third 7 [1.3], and fourth 8 [1.5]), suggesting that even when maintaining the same intensity, the perception of the entire workload increased with duration. CONCLUSIONS: Increases in duration, although performed with a consistent internal and external intensity, influences sRPE. These findings support the concept that sRPE may provide additional information on accumulated fatigue not available from other markers of TL.


Asunto(s)
Fatiga Muscular/fisiología , Percepción/fisiología , Acondicionamiento Físico Humano/métodos , Esfuerzo Físico/fisiología , Femenino , Frecuencia Cardíaca , Humanos , Ácido Láctico/sangre , Masculino , Acondicionamiento Físico Humano/fisiología , Natación/fisiología , Factores de Tiempo , Adulto Joven
15.
Int J Sports Physiol Perform ; 14(7): 994-996, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30569764

RESUMEN

Purpose: The session rating of perceived exertion (sRPE) is a well-accepted method of monitoring training load in athletes in many different sports. It is based on the category-ratio (0-10) RPE scale (BORG-CR10) developed by Borg. There is no evidence how substitution of the Borg 6-20 RPE scale (BORG-RPE) might influence the sRPE in athletes. Method: Systematically training, recreational-level athletes from a number of sport disciplines performed 6 randomly ordered, 30-min interval-training sessions, at intensities based on peak power output (PPO) and designed to be easy (50% PPO), moderate (75% PPO), or hard (85% PPO). Ratings of sRPE were obtained 30 min postexercise using either the BORG-CR10 or BORG-RPE and compared for matched exercise conditions. Results: The average percentage of heart-rate reserve was well correlated with sRPE from both BORG-CR10 (r = .76) and BORG-RPE (r = .69). The sRPE ratings from BORG-CR10 and BORG-RPE were very strongly correlated (r = .90) at matched times. Conclusions: Although producing different absolute numbers, sRPE derived from either the BORG-CR10 or BORG-RPE provides essentially interchangeable estimates of perceived exercise training intensity.


Asunto(s)
Prueba de Esfuerzo/normas , Acondicionamiento Físico Humano/métodos , Esfuerzo Físico , Adolescente , Adulto , Atletas , Frecuencia Cardíaca , Humanos , Carga de Trabajo , Adulto Joven
16.
J Cardiopulm Rehabil Prev ; 38(3): 139-146, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29697494

RESUMEN

Aerobic and resistance exercise training is a cornerstone of early outpatient cardiac rehabilitation (CR) and provides impressive benefits for patients. The components of the exercise prescription for patients with cardiovascular diseases are provided in guideline documents from several professional organizations and include frequency (how many sessions per week); intensity (how hard to exercise); time (duration of the exercise training session); type (modalities of exercise training); volume (the total amount or dose of exercise); and progression (the rate of increasing the dose of exercise). The least discussed, least appreciated, and most challenging component of the exercise prescription for CR health care professionals is the rate of progression of the dose of exercise. One reason for this observation is the heterogeneity of patients who participate in CR. All components of the exercise prescription should be developed specifically for each individual patient. This statement provides an overview of the principles of exercise prescription for patients in CR with special emphasis on the rate of progression. General recommendations for progression are given and patient case examples are provided to illustrate the principles of progression in exercise training.


Asunto(s)
Rehabilitación Cardiaca/métodos , Terapia por Ejercicio/métodos , Ejercicio Físico , Atención Ambulatoria , Humanos , Factores de Tiempo
17.
Int J Sports Physiol Perform ; 13(3): 367-373, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28771051

RESUMEN

The rating-of-perceived-exertion (RPE) template is thought to regulate pacing and has been shown to be very robust in different circumstances. PURPOSE: The primary purpose was to investigate whether the RPE template can be manipulated by changing the race distance during the course of a time trial. The secondary purpose was to study how athletes cope with this manipulation, especially in terms of the RPE template. METHOD: Trained male subjects (N = 10) performed 3 cycling time trials: a 10-km (TT10), a 15-km (TT15), and a manipulated 15-km (TTman). During the TTman, subjects started the time trial believing that they were going to perform a 10-km time trial. However, at 7.5 km they were told that it was a 15-km time trial. RESULTS: A significant main effect of time-trial condition on RPE scores until kilometer 7.5 was found (P = .016). Post hoc comparisons showed that the RPE values of the TT15 were lower than the RPE values of the TT10 (difference 0.60; CI95% 0.11, 1.0) and TTman (difference 0.73; CI95% 0.004, 1.5). After the 7.5 km, a transition phase occurs, in which an interaction effect is present (P = .011). After this transition phase, the RPE values of TTman and TT15 did not statistically differ (P = 1.00). CONCLUSIONS: This novel distance-endpoint manipulation demonstrates that it is possible to switch between RPE templates. A clear shift in RPE during the TTman is present between the RPE templates of the TT10 and TT15. The shift strongly supports suggestions that pacing is regulated using an RPE template.


Asunto(s)
Rendimiento Atlético/fisiología , Rendimiento Atlético/psicología , Ciclismo/fisiología , Percepción , Esfuerzo Físico , Adulto , Atletas , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo
18.
J Sports Sci Med ; 15(2): 379-86, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27274679

RESUMEN

Altitude training and respiratory muscle training (RMT) have been reported to improve performance in elite and well-trained athletes. Several devices (altitude and RMT) have been developed to help athletes gain the competitive edge. The Elevation Training Mask 2.0 (ETM) purportedly simulates altitude training and has been suggested to increase aerobic capacity (VO2max), endurance performance, and lung function. Twenty-four moderately trained subjects completed 6 weeks of high-intensity cycle ergometer training. Subjects were randomized into a mask (n = 12) or control (n = 12) group. Pre and post-training tests included VO2max, pulmonary function, maximal inspiration pressure, hemoglobin and hematocrit. No significant differences were found in pulmonary function or hematological variables between or within groups. There was a significant improvement in VO2max and PPO in both the control (13.5% and 9.9%) and mask (16.5% and 13.6%) groups. There was no difference in the magnitude of improvement between groups. Only the mask group had significant improvements in ventilatory threshold (VT) (13.9%), power output (PO) at VT (19.3%), respiratory compensation threshold (RCT) (10.2%), and PO at RCT (16.4%) from pre to post-testing. The trends for improvements in VT and PO at VT between groups were similar to improvements in RCT and PO at RCT, but did not reach statistical significance (VT p = 0.06, PO at VT p = 0.170). Wearing the ETM while participating in a 6-week high-intensity cycle ergometer training program does not appear to act as a simulator of altitude, but more like a respiratory muscle training device. Wearing the ETM may improve specific markers of endurance performance beyond the improvements seen with interval training alone. Key pointsWearing the ETM during a 6-week high-intensity cycle ergometer training program may improve performance variables, such as VO2max, PPO, VT, PO at VT, RCT and PO at RCT.Wearing the ETM did not improve lung function, inspiratory muscle strength, or stimulate changes in hemoglobin or hematocrit levels.The ETM does not simulate altitude, but works more like an respiratory training device.

19.
Int J Sports Physiol Perform ; 11(8): 1088-1093, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26999454

RESUMEN

PURPOSE: The session rating of perceived exertion (sRPE) has gained popularity as a "user friendly" method for evaluating internal training load. sRPE has historically been obtained 30 min after exercise. This study evaluated the effect of postexercise measurement time on sRPE after steady-state and interval cycle exercise. METHODS: Well-trained subjects (N = 15) (maximal oxygen consumption = 51 ± 4 and 36 ± 4 mL/kg [cycle ergometer] for men and women, respectively) completed counterbalanced 30-minute steady-state and interval training bouts. The steady-state ride was at 90% of ventilatory threshold. The work-to-rest ratio of the interval rides was 1:1, and the interval segment durations were 1, 2, and 3 min. The high-intensity component of each interval bout was 75% peak power output, which was accepted as a surrogate of the respiratory compensation threshold, critical power, or maximal lactate steady state. Heart rate, blood lactate, and rating of perceived exertion (RPE) were measured. The sRPE (category ratio scale) was measured at 5, 10, 15, 20, 25, 30, and 60 min and 24 h after each ride using a visual analog scale (VAS) to prevent bias associated with specific RPE verbal anchors. RESULTS: sRPE at 30 min postexercise followed a similar trend: steady state = 3.7, 1 min = 3.9, 2 min = 4.7, 3 min = 6.2. No significant differences (P > .05) in sRPE were found based on postexercise sampling times, from 5 min to 24 h postexercise. CONCLUSIONS: Postexercise time does not appear to have a significant effect on sRPE after either steady-state or interval exercise. Thus, sRPE appears to be temporally robust and is not necessarily limited to the 30-min-postexercise window historically used with this technique, although the presence or absence of a cooldown period after the exercise bout may be important.


Asunto(s)
Ciclismo , Contracción Muscular , Músculo Esquelético/fisiología , Percepción , Acondicionamiento Físico Humano/métodos , Esfuerzo Físico , Adolescente , Biomarcadores/sangre , Prueba de Esfuerzo , Femenino , Frecuencia Cardíaca , Humanos , Ácido Láctico/sangre , Masculino , Fatiga Muscular , Fuerza Muscular , Consumo de Oxígeno , Recuperación de la Función , Factores de Tiempo , Adulto Joven
20.
J Sports Sci Med ; 14(4): 747-55, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26664271

RESUMEN

UNLABELLED: High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. RESULTS: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...