Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8361, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102136

RESUMEN

Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.


Asunto(s)
ARN Polimerasa II , Rabdomiosarcoma Alveolar , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Cisteína/metabolismo , Factores de Transcripción/metabolismo , Factor de Transcripción PAX3/genética , Rabdomiosarcoma Alveolar/genética , ARN/metabolismo , Activación Transcripcional , Unión Proteica , Proteína Forkhead Box O1/metabolismo
2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37259348

RESUMEN

Fusion-positive rhabdomyosarcoma (FP-RMS) is driven by a translocation that creates the chimeric transcription factor PAX3-FOXO1 (P3F), which assembles de novo super enhancers to drive high levels of transcription of other core regulatory transcription factors (CRTFs). P3F recruits co-regulatory factors to super enhancers such as BRD4, which recognizes acetylated lysines via BET bromodomains. In this study, we demonstrate that inhibition or degradation of BRD4 leads to global decreases in transcription, and selective downregulation of CRTFs. We also show that the BRD4 degrader ARV-771 halts transcription while preserving RNA Polymerase II (Pol2) loops between super enhancers and their target genes, and causes the removal of Pol2 only past the transcriptional end site of CRTF genes, suggesting a novel effect of BRD4 on Pol2 looping. We finally test the most potent molecule, inhibitor BMS-986158, in an orthotopic PDX mouse model of FP-RMS with additional high-risk mutations, and find that it is well tolerated in vivo and leads to an average decrease in tumor size. This effort represents a partnership with an FP-RMS patient and family advocates to make preclinical data rapidly accessible to the family, and to generate data to inform future patients who develop this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...