Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 14(12)2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38137056

RESUMEN

Color can be an indicator of plant health, quality, and productivity, and is useful to researchers to understand plant nutritional content in their studies. Color may be related to chlorophyll content and photosynthetic activity and provides information for those studying diseases and mineral nutrition because every nutrient deficiency and many diseases produce symptoms that affect color. In order to identify significant loci related to both leaf and pod color in a snap bean (Phaseolus vulgaris L.) diversity panel, a genome-wide association study (GWAS) was carried out. Leaf color in one and pod traits in multiple environments were characterized using a colorimeter. L*a*b* color data were recorded and used to calculate chroma (C*) and hue angle (H°). Leaves were evaluated at three positions (lower, middle, and upper) in the canopy and both pod exterior and interior colors were obtained. GWAS was conducted using two reference genomes that represent the Andean (G19833) and Middle American (5-593) domestication centers. Narrow sense heritabilities were calculated using the mixed linear model (MLM) method in genome association and prediction integrated tool (GAPIT), and significant single nucleotide polymorphisms (SNPs) for each color parameter were obtained using the Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) GWAS model with two principal components (PCAs). In comparison to pod color traits, narrow sense heritabilities of leaf traits were low and similar for both reference genomes. Generally, narrow sense heritability for all traits was highest in the lower, followed by middle, and then upper leaf positions. Heritability for both pod interior and exterior color traits was higher using the G19833 reference genome compared to 5-593 when evaluated by year and means across years. Forty-five significant SNPs associated with leaf traits and 872 associated with pods, totaling 917 significant SNPs were identified. Only one SNP was found in common for both leaf and pod traits on Pv03 in the 5-593 reference genome. One-hundred thirteen significant SNPs, 30 in leaves and 83 in pods had phenotypic variation explained (PVE) of 10% or greater. Fourteen SNPs (four from G19833 and ten from 5-593) with ≥10 PVE%, large SNP effect, and largest p-value for L* and H° pod exterior was identified on Pv01, Pv02, Pv03, and Pv08. More SNPs were associated with pod traits than with leaf traits. The pod interior did not exhibit colors produced by anthocyanins or flavonols which allowed the differentiation of potential candidate genes associated with chloroplast and photosynthetic activity compared to the pod exterior where candidate genes related to both flavonoids and photosynthesis affected color. Several SNPs were associated with known qualitative genes including the wax pod locus (y), persistent color (pc), purple pods (V), and two genes expressed in seeds but not previously reported to affect other plant tissues (B and J). An evaluation of significant SNPs within annotated genes found a number, within a 200 kb window, involved in both flavonoid and photosynthetic biosynthetic pathways.


Asunto(s)
Estudio de Asociación del Genoma Completo , Phaseolus , Estados Unidos , Antocianinas , Teorema de Bayes , Phaseolus/genética , Hojas de la Planta/genética
2.
Sci Rep ; 13(1): 12875, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553377

RESUMEN

Tepary bean (Phaseolus acutifolius A. Gray) is an underutilized drought tolerant annual legume, originating from the Sonoran Desert, that may be a beneficial forage/hay for beef cattle in the Southern Great Plains of the US (SGP). The SGP has erratic rainfall and periods of intermittent drought exacerbated by high summer temperatures. In 2020 and 2021, a split-plot design was used to evaluate 13 genotypes of tepary bean and a forage soybean (control) at El Reno, OK, USA to compare production of plant biomass and forage nutritive value parameters under seven harvest regimes. Genotypes were used as the main plot and cutting management as the sub-plot. Biomass production of all tepary bean genotypes equaled that of soybean (p > 0.05), while several genotypes had superior forage nutritive value traits (p ≤ 0.05). Overall, a 15-cm cutting height and 30-day harvest interval produced the best overall product (average dry biomass of 5.8 Mg ha-1 with average relative feed values (RFV) of 165). Although all harvest regimes reduced total seasonal biomass, forage nutritive value increased. However, the tradeoff between forage production and nutritive value may be unacceptable to most producers. Further agronomic and breeding research is needed to encourage producers to grow tepary bean as a forage/hay in the SGP.


Asunto(s)
Phaseolus , Bovinos , Animales , Phaseolus/genética , Fitomejoramiento , Genotipo
3.
Plant Genome ; 16(3): e20363, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37332263

RESUMEN

Tepary bean (Phaseolus acutifolius A. Gray), indigenous to the arid climates of northern Mexico and the Southwest United States, diverged from common bean (Phaseolus vulgaris L.), approximately 2 million years ago and exhibits a wide range of resistance to biotic stressors. The tepary genome is highly syntenic to the common bean genome providing a foundation for discovery and breeding of agronomic traits between these two crop species. Although a limited number of adaptive traits from tepary bean have been introgressed into common bean, hybridization barriers between these two species required the development of bridging lines to alleviate this barrier. Thus, to fully utilize the extant tepary bean germplasm as both a crop and as a donor of adaptive traits, we developed a diversity panel of 422 cultivated, weedy, and wild tepary bean accessions which were then genotyped and phenotyped to enable population genetic analyses and genome-wide association studies for their response to a range of biotic stressors. Population structure analyses of the panel revealed eight subpopulations and the differentiation of botanical varieties within P. acutifolius. Genome-wide association studies revealed loci and candidate genes underlying biotic stress resistance including quantitative trait loci for resistance to weevils, common bacterial blight, Fusarium wilt, and bean common mosaic necrosis virus that can be harnessed not only for tepary bean but also common bean improvement.


Asunto(s)
Phaseolus , Phaseolus/química , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Sitios de Carácter Cuantitativo , Variación Genética
4.
Plants (Basel) ; 12(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986997

RESUMEN

The symbiotic N2-fixation process in the legume-rhizobia interaction is relevant for sustainable agriculture. The characterization of symbiotic mutants, mainly in model legumes, has been instrumental for the discovery of symbiotic genes, but similar studies in crop legumes are scant. To isolate and characterize common bean (Phaseolus vulgaris) symbiotic mutants, an ethyl methanesulphonate-induced mutant population from the BAT 93 genotype was analyzed. Our initial screening of Rhizobium etli CE3-inoculated mutant plants revealed different alterations in nodulation. We proceeded with the characterization of three non-nodulating (nnod), apparently monogenic/recessive mutants: nnod(1895), nnod(2353) and nnod(2114). Their reduced growth in a symbiotic condition was restored when the nitrate was added. A similar nnod phenotype was observed upon inoculation with other efficient rhizobia species. A microscopic analysis revealed a different impairment for each mutant in an early symbiotic step. nnod(1895) formed decreased root hair curling but had increased non-effective root hair deformation and no rhizobia infection. nnod(2353) produced normal root hair curling and rhizobia entrapment to form infection chambers, but the development of the latter was blocked. nnod(2114) formed infection threads that did not elongate and thus did not reach the root cortex level; it occasionally formed non-infected pseudo-nodules. The current research is aimed at mapping the responsible mutated gene for a better understanding of SNF in this critical food crop.

5.
Front Plant Sci ; 13: 830896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557726

RESUMEN

Common bean (Phaseolus vulgaris L.) has two major origins of domestication, Andean and Mesoamerican, which contribute to the high diversity of growth type, pod and seed characteristics. The climbing growth habit is associated with increased days to flowering (DF), seed iron concentration (SdFe), nitrogen fixation, and yield. However, breeding efforts in climbing beans have been limited and independent from bush type beans. To advance climbing bean breeding, we carried out genome-wide association studies and genomic predictions using 1,869 common bean lines belonging to five breeding panels representing both gene pools and all growth types. The phenotypic data were collected from 17 field trials and were complemented with 16 previously published trials. Overall, 38 significant marker-trait associations were identified for growth habit, 14 for DF, 13 for 100 seed weight, three for SdFe, and one for yield. Except for DF, the results suggest a common genetic basis for traits across all panels and growth types. Seven QTL associated with growth habits were confirmed from earlier studies and four plausible candidate genes for SdFe and 100 seed weight were newly identified. Furthermore, the genomic prediction accuracy for SdFe and yield in climbing beans improved up to 8.8% when bush-type bean lines were included in the training population. In conclusion, a large population from different gene pools and growth types across multiple breeding panels increased the power of genomic analyses and provides a solid and diverse germplasm base for genetic improvement of common bean.

6.
Nat Commun ; 12(1): 2638, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976152

RESUMEN

Tepary bean (Phaseolus acutifolis A. Gray), native to the Sonoran Desert, is highly adapted to heat and drought. It is a sister species of common bean (Phaseolus vulgaris L.), the most important legume protein source for direct human consumption, and whose production is threatened by climate change. Here, we report on the tepary genome including exploration of possible mechanisms for resilience to moderate heat stress and a reduced disease resistance gene repertoire, consistent with adaptation to arid and hot environments. Extensive collinearity and shared gene content among these Phaseolus species will facilitate engineering climate adaptation in common bean, a key food security crop, and accelerate tepary bean improvement.


Asunto(s)
Aclimatación/genética , Evolución Molecular , Genoma de Planta , Phaseolus/genética , Fitomejoramiento/métodos , Cambio Climático , Productos Agrícolas/genética , Domesticación , Sequías , Seguridad Alimentaria , Ingeniería Genética/métodos , Respuesta al Choque Térmico/genética
7.
BMC Plant Biol ; 21(1): 58, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482732

RESUMEN

BACKGROUND: Physical seed dormancy is an important trait in legume domestication. Although seed dormancy is beneficial in wild ecosystems, it is generally considered to be an undesirable trait in crops due to reduction in yield and / or quality. The physiological mechanism and underlying genetic factor(s) of seed dormancy is largely unknown in several legume species. Here we employed an integrative approach to understand the mechanisms controlling physical seed dormancy in common bean (Phaseolus vulgaris L.). RESULTS: Using an innovative CT scan imaging system, we were able to track water movements inside the seed coat. We found that water uptake initiates from the bean seed lens. Using a scanning electron microscopy (SEM) we further identified several micro-cracks on the lens surface of non-dormant bean genotypes. Bulked segregant analysis (BSA) was conducted on a bi-parental RIL (recombinant inbred line) population, segregating for seed dormancy. This analysis revealed that the seed water uptake is associated with a single major QTL on Pv03. The QTL region was fine-mapped to a 118 Kb interval possessing 11 genes. Coding sequence analysis of candidate genes revealed a 5-bp insertion in an ortholog of pectin acetylesterase 8 that causes a frame shift, loss-of-function mutation in non-dormant genotype. Gene expression analysis of the candidate genes in the seed coat of contrasting genotypes indicated 21-fold lower expression of pectin acetylesterase 8 in non-dormant genotype. An analysis of mutational polymorphism was conducted among wild and domesticated beans. Although all the wild beans possessed the functional allele of pectin acetylesterase 8, the majority (77%) of domesticated beans had the non-functional allele suggesting that this variant was under strong selection pressure through domestication. CONCLUSIONS: In this study, we identified the physiological mechanism of physical seed dormancy and have identified a candidate allele causing variation in this trait. Our findings suggest that a 5-bp insertion in an ortholog of pectin acetylesterase 8 is likely a major causative mutation underlying the loss of seed dormancy during domestication. Although the results of current study provide strong evidences for the role of pectin acetylesterase 8 in seed dormancy, further confirmations seem necessary by employing transgenic approaches.


Asunto(s)
Cromosomas de las Plantas/genética , Esterasas/metabolismo , Phaseolus/genética , Latencia en las Plantas/genética , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Productos Agrícolas , Domesticación , Ecosistema , Esterasas/genética , Genotipo , Microscopía Electrónica de Rastreo , Mutagénesis Insercional , Phaseolus/enzimología , Phaseolus/fisiología , Phaseolus/ultraestructura , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/fisiología , Semillas/ultraestructura , Agua/metabolismo
8.
G3 (Bethesda) ; 9(6): 1881-1892, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31167806

RESUMEN

The genetic improvement of economically important production traits of dry bean (Phaseolus vulgaris L.), for geographic regions where production is threatened by drought and high temperature stress, is challenging because of the complex genetic nature of these traits. Large scale SNP data sets for the two major gene pools of bean, Andean and Middle American, were developed by mapping multiple pools of genotype-by-sequencing reads and identifying over 200k SNPs for each gene pool against the most recent assembly of the P. vulgaris genome sequence. Moderately sized B ean A biotic S tress E valuation (BASE) panels, consisting of genotypes appropriate for production in Central America and Africa, were assembled. Phylogenetic analyses demonstrated the BASE populations represented broad genetic diversity for the appropriate races within the two gene pools. Joint mixed linear model genome-wide association studies with data from multiple locations discovered genetic factors associated with four production traits in both heat and drought stress environments using the BASE panels. Pleiotropic genetic factors were discovered using a multi-trait mixed model analysis. SNPs within or near candidate genes associated with hormone signaling, epigenetic regulation, and ROS detoxification under stress conditions were identified and can be used as genetic markers in dry bean breeding programs.


Asunto(s)
Ambiente , Estudio de Asociación del Genoma Completo , Phaseolus/fisiología , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Estrés Fisiológico , Adaptación Biológica , Interacción Gen-Ambiente , Marcadores Genéticos , Variación Genética , Genética de Población , Genotipo , Phaseolus/clasificación , Filogenia , Polimorfismo de Nucleótido Simple
9.
Plant Sci ; 270: 1-12, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29576062

RESUMEN

Phytic acid (InsP6) is the main storage form of phosphate in seeds. In the plant it plays an important role in response to environmental stress and hormonal changes. InsP6 is a strong chelator of cations, reducing the bioavailability of essential minerals in the diet. Only a common bean low phytic acid (lpa1) mutant, affected in the PvMRP1 gene, coding for a putative tonoplastic phytic acid transporter, was described so far. This mutant is devoid of negative pleiotropic effects normally characterising lpa mutants. With the aim of isolating new common bean lpa mutants, an ethyl methane sulfonate mutagenized population was screened, resulting in the identification of an additional lpa1 allele. Other putative lpa lines were also isolated. The PvMRP2 gene is probably able to complement the phenotype of mutants affected in the PvMRP1 gene in tissues other than the seed. Only the PvMRP1 gene is expressed at appreciable levels in cotyledons. Arabidopsis thaliana and Medicago truncatula transgenic plants harbouring 1.5 kb portions of the intergenic 5' sequences of both PvMRP genes, fused upstream of the GUS reporter, were generated. GUS activity in different organs suggests a refined, species-specific mechanisms of regulation of gene expression for these two PvMRP genes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Arabidopsis/genética , Medicago truncatula/genética , Phaseolus/genética , Ácido Fítico/metabolismo , Regiones Promotoras Genéticas/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Medicago truncatula/metabolismo , Mutación , Phaseolus/metabolismo , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/metabolismo , Especificidad de la Especie
10.
G3 (Bethesda) ; 8(1): 291-302, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29167273

RESUMEN

Mitochondria execute key pathways of central metabolism and serve as cellular sensing and signaling entities, functions that depend upon interactions between mitochondrial and nuclear genetic systems. This is exemplified in cytoplasmic male sterility type S (CMS-S) of Zea mays, where novel mitochondrial open reading frames are associated with a pollen collapse phenotype, but nuclear restorer-of-fertility (restorer) mutations rescue pollen function. To better understand these genetic interactions, we screened Activator-Dissociation (Ac-Ds), Enhancer/Suppressor-mutator (En/Spm), and Mutator (Mu) transposon-active CMS-S stocks to recover new restorer mutants. The frequency of restorer mutations increased in transposon-active stocks compared to transposon-inactive stocks, but most mutants recovered from Ac-Ds and En/Spm stocks were unstable, reverting upon backcrossing to CMS-S inbred lines. However, 10 independent restorer mutations recovered from CMS-S Mu transposon stocks were stable upon backcrossing. Many restorer mutations condition seed-lethal phenotypes that provide a convenient test for allelism. Eight such mutants recovered in this study included one pair of allelic mutations that were also allelic to the previously described rfl2-1 mutant. Targeted analysis of mitochondrial proteins by immunoblot identified two features that consistently distinguished restored CMS-S pollen from comparably staged, normal-cytoplasm, nonmutant pollen: increased abundance of nuclear-encoded alternative oxidase relative to mitochondria-encoded cytochrome oxidase and decreased abundance of mitochondria-encoded ATP synthase subunit 1 compared to nuclear-encoded ATP synthase subunit 2. CMS-S restorer mutants thus revealed a metabolic plasticity in maize pollen, and further study of these mutants will provide new insights into mitochondrial functions that are critical to pollen and seed development.


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Mutación , Infertilidad Vegetal/genética , Semillas/genética , Zea mays/genética , Núcleo Celular/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Polinización/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
11.
Front Plant Sci ; 8: 1170, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28736566

RESUMEN

Pseudomonas syringae pv. phaseolicola (Psph) Race 6 is a globally prevalent and broadly virulent bacterial pathogen with devastating impact causing halo blight of common bean (Phaseolus vulgaris L.). Common bean lines PI 150414 and CAL 143 are known sources of resistance against this pathogen. We constructed high-resolution linkage maps for three recombinant inbred populations to map resistance to Psph Race 6 derived from the two common bean lines. This was complemented with a genome-wide association study (GWAS) of Race 6 resistance in an Andean Diversity Panel of common bean. Race 6 resistance from PI 150414 maps to a single major-effect quantitative trait locus (QTL; HB4.2) on chromosome Pv04 and confers broad-spectrum resistance to eight other races of the pathogen. Resistance segregating in a Rojo × CAL 143 population maps to five chromosome arms and includes HB4.2. GWAS detected one QTL (HB5.1) on chromosome Pv05 for resistance to Race 6 with significant influence on seed yield. The same HB5.1 QTL, found in both Canadian Wonder × PI 150414 and Rojo × CAL 143 populations, was effective against Race 6 but lacks broad resistance. This study provides evidence for marker-assisted breeding for more durable halo blight control in common bean by combining alleles of race-nonspecific resistance (HB4.2 from PI 150414) and race-specific resistance (HB5.1 from cv. Rojo).

12.
Plant Dis ; 100(7): 1351-1357, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30686205

RESUMEN

In common bean (Phaseolus vulgaris L.), Rhizoctonia solani Kühn is an important pathogen causing web blight (WB) in the tropics, and it is also a soilborne pathogen causing root rot (RR) worldwide. This pathogen is a species complex classified into 14 anastomosis groups (AG). AG 1-IA, AG 1-IB, AG 1-IE, AG 1-IF, AG 2-2, and AG 4 have been reported to cause WB of the aboveground structures of the plant, while AG 4 and AG 2-2 have been associated with RR. There is limited information, however, concerning the ability of particular isolates of specific AG to cause both diseases in common bean. Nine R. solani isolates, including three AG 1 and three AG 4 WB isolates and three AG 4 RR isolates collected from both leaves and roots, respectively, of common bean in Puerto Rico, were used to evaluate the response of 12 common bean genotypes to WB inoculated using a detached-leaf method and to RR inoculated using a solution suspension of R. solani mycelia in the greenhouse. All R. solani isolates were able to induce both RR and WB symptoms. RR readings were generally more severe than the WB readings. The RR isolate RR1 (AG 4) produced the most severe RR scores. A few bean lines had mean RR scores ≤4.4 for specific R. solani isolates on a scale of 1 to 9, with 1 representing resistant and 9 highly susceptible. However, all of the bean lines had mean RR scores ≥5.0 when inoculated with the isolates RR1, RR2, and RR3, which were determined to be AG 4 in this study. Significant line-isolate interactions were observed for the WB and RR inoculations for the three planting dates, suggesting a differential response of the common bean lines to the pathogen. This genotypic interaction may require bean breeders and pathologists to monitor the virulence patterns of R. solani in specific growing environments, while the compatibility of specific R. solani isolates to both aerial and root tissue needs to be considered for disease control strategies.

13.
Funct Plant Biol ; 38(12): 927-933, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32480951

RESUMEN

Climate change and global population increase are two converging forces that will jointly challenge researchers to design programs that ensure crop production systems meet the world's food demand. Climate change will potentially reduce productivity while a global population increase will require more food. If productivity is not improved for future climatic conditions, food insecurity may foster major economic and political uncertainty. Given the importance of grain legumes in general - common bean (Phaseolus vulgaris L.) in particular - a workshop entitled 'Improving Tolerance of Common Bean to Abiotic Stresses' was held with the goal of developing an interdisciplinary research agenda designed to take advantage of modern genotyping and breeding approaches that are coupled with large scale phenotyping efforts to improve common bean. Features of the program included a multinational phenotyping effort to evaluate the major common bean core germplasm collections and appropriate genetic populations. The phenotyping effort will emphasise the response of root and shoot traits to individual and combined stress conditions. These populations would also be genotyped using newly emerging high density single nucleotide polymorphism (SNP) marker arrays or next generation sequencing technology. Association analysis of the core collections aims to identify key loci associated with the response to the stress conditions. Companion bi-parental quantitative trait loci (QTL) experiments will act as confirmation experiments for the association analysis. The upcoming release of the genome sequence of common bean will be leveraged by utilising population genomic approaches to discover genomic regions that differentiate stress-responsive and non-responsive genotypes. The genome sequence will also enable global gene expression studies that will highlight specific molecular-based stress responses. This collective knowledge will inform the selection of parental lines to improve the efficiency of common bean improvement programs.

14.
J Biochem Biophys Methods ; 67(1): 1-5, 2006 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-16472866

RESUMEN

A simple, inexpensive design is presented for the rapid conversion of the popular MD-4 Polaroid land camera to a high quality digital gel documentation system. Images of ethidium bromide stained DNA gels captured using the digital system were compared to images captured on Polaroid instant film. Resolution and sensitivity were enhanced using the digital system. In addition to the low cost and superior image quality of the digital system, there is also the added convenience of real-time image viewing through the swivel LCD of the digital camera, wide flexibility of gel sizes, accurate automatic focusing, variable image resolution, and consistent ease of use and quality. Images can be directly imported to a computer by using the USB port on the digital camera, further enhancing the potential of the digital system for documentation, analysis, and archiving. The system is appropriate for use as a start-up gel documentation system and for routine gel analysis.


Asunto(s)
Documentación , Electroforesis en Gel de Agar/instrumentación , Fotograbar/instrumentación , ADN/química , Electroforesis en Gel de Agar/métodos , Fotograbar/métodos
15.
Plant J ; 45(2): 250-63, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16367968

RESUMEN

Abscisic acid (ABA), auxin and nitrate are important signaling molecules that affect plant growth responses to the environment. The synthesis or metabolism of these compounds depends on the molybdenum cofactor (MoCo). We show that maize (Zea mays) viviparous10 (vp10) mutants have strong precocious germination and seedling lethal phenotypes that cannot be rescued with tissue culture. We devised a novel PCR-based method to clone a transposon-tagged allele of vp10, and show that Vp10 encodes the ortholog of Cnx1, which catalyzes the final common step of MoCo synthesis. The seedling phenotype of vp10 mutants is consistent with disruptions in ABA and auxin biosynthesis, as well as a disruption in nitrate metabolism. Levels of ABA and auxin are reduced in vp10 mutants, and vp10 seedlings lack MoCo-dependent enzyme activities that are repairable with exogenous molybdenum. vp10 and an Arabidopsis cnx1 mutant, chlorate6 (chl6), have similar defects in aldehyde oxidase (AO) enzyme activity, which is required for ABA synthesis. Surprisingly, chl6 mutants do not show defects in abiotic stress responses. These observations confirm an orthologous function for Cnx1 and Vp10, as well as defining a characteristic viviparous phenotype to identify other maize cnx mutants. Finally, the vp10 mutant phenotype suggests that cnx mutants can have auxin- as well as ABA-biosynthesis defects, while the chl6 mutant phenotype suggests that low levels of AO activity are sufficient for normal abiotic stress responses.


Asunto(s)
Coenzimas/biosíntesis , Metaloproteínas/biosíntesis , Proteínas de Plantas/genética , Zea mays/genética , Alelos , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Datos de Secuencia Molecular , Cofactores de Molibdeno , Pteridinas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Plant J ; 45(2): 264-74, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16367969

RESUMEN

A new Zea mays viviparous seed mutant, viviparous15 (vp15), was isolated from the UniformMu transposon-tagging population. In addition to precocious germination, vp15 has an early seedling lethal phenotype. Biochemical analysis showed reduced activities of several enzymes that require molybdenum cofactor (MoCo) in vp15 mutant seedlings. Because MoCo is required for abscisic acid (ABA) biosynthesis, the viviparous phenotype is probably caused by ABA deficiency. We cloned the vp15 mutant using a novel high-throughput strategy for analysis of high-copy Mu lines: We used MuTAIL PCR to extract genomic sequences flanking the Mu transposons in the vp15 line. The Mu insertions specific to the vp15 line were identified by in silico subtraction using a database of MuTAIL sequences from 90 UniformMu lines. Annotation of the vp15-specific sequences revealed a Mu insertion in a gene homologous to human MOCS2A, the small subunit of molybdopterin (MPT) synthase. Molecular analysis of two allelic mutations confirmed that Vp15 encodes a plant MPT synthase small subunit (ZmCNX7). Our results, and a related paper reporting the cloning of maize viviparous10, demonstrate robust cloning strategies based on MuTAIL-PCR. The Vp15/CNX7, together with other CNX genes, is expressed in both embryo and endosperm during seed maturation. Expression of Vp15 appears to be regulated independently of MoCo biosynthesis. Comparisons of Vp15 loci in genomes of three cereals and Arabidopsis thaliana identified a conserved sequence element in the 5' untranslated region as well as a micro-synteny among the cereals.


Asunto(s)
Genes de Plantas , Sulfurtransferasas/genética , Zea mays/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Northern Blotting , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Sulfurtransferasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...