Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37989949

RESUMEN

Aquatic species are exposed to a wide spectrum of substances, which can compromise their genomic integrity by inducing DNA damage or oxidative stress. Genotoxicity biomarkers as DNA strand breaks and chromosomal damages developed on sentinel species have already proved to be relevant in aquatic biomonitoring. However, these biomarkers do not reflect DNA oxidative lesions, i.e., the 8-oxodG, recognized as pre-mutagenic lesion if not or mis-repaired in human biomonitoring. The relevance to include the measure of these lesions by using the Fpg-modified comet assay on erythrocytes of the three-spined stickleback was investigated. An optimization step of the Fpg-modified comet assay considering enzyme buffer impact, Fpg concentration, and incubation time has been performed. Then, this measure was integrated in a battery of genotoxicity and cytotoxicity biomarkers (considering DNA strand breaks, DNA content variation, and cell apoptosis/necrosis and density) and applied in a freshwater monitoring program on six stations of the Artois Picardie watershed (3-week caging of control fish). These biomarkers allowed to discriminate the stations regarding the genotoxic potential of water bodies and specifically by the measure of oxidative DNA lesions, which seem to be a promising tool in environmental genotoxicity risk assessment.

2.
Sci Total Environ ; 904: 166326, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591395

RESUMEN

Recent monitoring campaigns have revealed the presence of mixtures of pesticides and their transformation products (TP) in headwater streams situated within agricultural catchments. These observations were attributed to the use of various agrochemicals in surrounding regions. The aim of this work was to compare the application of chemical and ecotoxicological tools for assessing environmental quality in relation to pesticide and TP contamination. It was achieved by deploying these methodologies in two small lentic water bodies located at the top of two agricultural catchments, each characterized by distinct agricultural practices (ALT: organic, CHA: conventional). Additionally, the results make it possible to assess the impact of contamination on fish caged in situ. Pesticides and TP were measured in water using active and passive samplers and suspended solid particles. Eighteen biomarkers (innate immune responses, oxidative stress, biotransformation, neurotoxicity, genotoxicity, and endocrine disruption) were measured in Gasterosteus aculeatus encaged in situ. More contaminants were detected in CHA, totaling 25 compared to 14 in ALT. Despite the absence of pesticide application in the ALT watershed for the past 14 years, 7 contaminants were quantified in 100 % of the water samples. Among these contaminants, 6 were TPs (notably atrazine-2-hydroxy, present at a concentration exceeding 300 ng·L-1), and 1 was a current pesticide, prosulfocarb, whose mobility should prompt more caution and new regulations to protect adjacent ecosystems and crops. Regarding the integrated biomarker response (IBRv2), caged fish was similarly impacted in ALT and CHA. Variations in biomarker responses were highlighted depending on the site, but the results did not reveal whether one site is of better quality than the other. This outcome was likely attributed to the occurrence of contaminant mixtures in both sites. The main conclusions revealed that chemical and biological tools complement each other to better assess the environmental quality of wetlands such as ponds.


Asunto(s)
Plaguicidas , Smegmamorpha , Contaminantes Químicos del Agua , Animales , Plaguicidas/toxicidad , Plaguicidas/análisis , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Agricultura , Smegmamorpha/metabolismo , Peces/metabolismo , Biomarcadores/metabolismo , Agua
3.
J Environ Manage ; 341: 118049, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37182402

RESUMEN

The Integrated Biomarker Response (IBR) is one of the most used index in biomonitoring, especially the IBRv2 integrating a reference condition. However, some limitations remain for its routine and large-scale use. The IBRv2 is proportional to the total number of biomarkers, is dependent on the nature of biomarkers and considers all biomarkers modulations, even small and biologically non-significant. In addition, IBRv2 relies on reference values but the references are often different between each study, making it difficult to compare results between studies and/or campaigns. To overcome these limitations, the present work proposed a new index called IBR-T ("Integrated Biomarker Response - Threshold") which considers the threshold values of biomarkers by limiting the calculation of the IBR value to biomarkers with significant modulations. The IBRv2 and the IBR-T were calculated and compared on four datasets from active biomonitoring campaigns using Dreissena polymorpha, a bivalve widely used in freshwater biomonitoring studies. The comparison between indices has demonstrated that the IBR-T presents a better correlation (0.907 < r2 < 0.998) with the percentage of biomarkers significantly modulated than the IBRv2 (0.002 < r2 < 0.759). The IBRv2 could not be equal to 0 (0.915 < intercept <1.694) because the value was dependent on the total number of biomarkers, whereas the IBR-T reached 0 when no biomarker was significantly modulated, which appears more biologically relevant. The final ranking of sites was different between the two index and the IBR-T ranking tends to be more ecologically relevant that the IBRv2 ranking. This IBR-T have shown an undeniable interest for biomonitoring and could be used by environmental managers to simplify the interpretation of large datasets, directly interpret the contamination status of the site, use it to decision-making, and finally to easily communicate the results of biomonitoring studies to the general public.


Asunto(s)
Dreissena , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente/métodos , Biomarcadores , Dreissena/fisiología , Agua Dulce , Valores de Referencia , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 858(Pt 1): 159801, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461577

RESUMEN

Anthropogenic chemicals as emerging contaminants, such as pharmaceuticals, increased worldwide in the environment. This study aimed to apply metabolomics-based approaches on the fish model species three-spined stickleback (Gasterosteus aculeatus) exposed to diclofenac (DCF) to identify toxicity pathways and potential biomarkers. For this purpose, males and females were exposed to a continuous flow of diclofenac solution in laboratory for 21 days, followed by 3 days of depuration, to nominal concentrations of 1 (low) and 100 µg/L (high) of DCF. A methodology based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) was employed. Uni- and multivariate statistical analyses were combined to evaluate the modulations of the liver metabolome of G. aculeatus after exposure to DCF. The metabolomics data revealed variations both as a function of time and of the DCF concentration. We observed 2487 altered metabolites, with 1460 and 1027 specific to males and females, respectively. Some of them were significantly impaired by the experimental conditions. However, we showed that several metabolites were impacted by other factors as they were already modulated in the control individuals. The results indicated that the energy metabolism was up-modulated in females and down-modulated in males, with the presence of DCF. The antioxidant system was impacted in males, suggesting oxidative stress in the metabolism, while the immunity system was down-regulated in females following exposure. Moreover, our results revealed 1 and 4 metabolites as potential metabolic biomarkers in male and female sticklebacks, respectively. Among them, the glutaryl-carnitine and the adipoyl-carnitine were putatively identified in females, known to be implicated in the energy metabolism. These 5 metabolites showed to be promising biomarkers since they were early modulated during exposure to the stress and showed a notable trend through time.


Asunto(s)
Diclofenaco , Smegmamorpha , Femenino , Masculino , Animales , Diclofenaco/toxicidad , Metabolómica , Espectrometría de Masas , Cromatografía Liquida , Carnitina , Hígado
5.
Sci Total Environ ; 838(Pt 1): 155912, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588819

RESUMEN

The complex mixtures of contaminants released in wastewater treatment plant (WWTP) effluents are a major source of pollution for aquatic ecosystems. The present work aimed to assess the environmental risk posed by WWTP effluents by applying a multi-biomarker approach on caged rainbow trout (Oncorhynchus mykiss) juveniles. Fish were caged upstream and downstream of a WWTP for 21 days. To evaluate fish health, biomarkers representing immune, reproductive, nervous, detoxification, and antioxidant functions were assayed. Biomarker responses were then synthesized using an Integrated Biomarker Response (IBR) index. The IBR highlighted similar response patterns for the upstream and downstream sites. Caged juvenile females showed increased activities of innate immune parameters (lysozyme and complement), histological lesions and reduced glycogen content in the hepatic tissue, and higher muscle cholinergic metabolism. However, the intensity of the observed effects was more severe downstream of the WWTP. The present results suggest that the constitutive pollution level of the Meuse River measured upstream from the studied WWTP can have deleterious effects on fish health condition, which are exacerbated by the exposure to WWTP effluents. Our results infer that the application of IBR index is a promising tool to apply with active biomonitoring approaches as it provides comprehensive information about the biological effects caused by point source pollution such as WWTP, but also by the constitutive pollutions levels encountered in the receiving environment.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Monitoreo Biológico , Biomarcadores/metabolismo , Ecosistema , Monitoreo del Ambiente/métodos , Femenino , Oncorhynchus mykiss/metabolismo , Aguas Residuales/análisis , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/análisis
6.
Toxics ; 10(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35324726

RESUMEN

Water is impacted by a variety of increasing pressures, such as contaminants, including genotoxic pollutants. The proposed multi-biomarker approach at a sub-individual level gives a complementary indicator to the chemical and ecological parameters of the Water Framework Directive (WFD, 2000/60/EC). By integrating biomarkers of genotoxicity and erythrocyte necrosis in the sentinel fish species the three-spined stickleback (Gasterosteus aculeatus) through active biomonitoring of six stations of the Artois-Picardie watershed, north France, our work aimed to improve the already existing biomarker approach. Even if fish in all stations had high levels of DNA strand breaks, the multivariate analysis (PCA), followed by hierarchical agglomerative clustering (HAC), improved discrimination among stations by detecting an increase of nuclear DNA content variation (Etaing, St Rémy du Nord, Artres and Biache-St-Vaast) and erythrocyte necrosis (Etaing, St Rémy du Nord). The present work highlighted that the integration of these biomarkers of genotoxicity in a multi-biomarker approach is appropriate to expand physiological parameters which allow the targeting of new potential effects of contaminants.

7.
Sci Total Environ ; 808: 152148, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34864038

RESUMEN

A biomonitoring approach based on a single model species cannot be representative of the contaminations impacts on the ecosystem overall. As part of the Interreg DIADeM program ("Development of an integrated approach for the diagnosis of the water quality of the River Meuse"), a study was conducted to establish the proof of concept that the use of a multispecies active biomonitoring approach improves diagnostic of aquatic systems. The complementarity of the biomarker responses was tested in four model species belonging to various ecological compartments: the bryophyte Fontinalis antipyretica, the bivalve Dreissena polymorpha, the amphipod Gammarus fossarum and the fish Gasterosteus aculeatus. The species have been caged upstream and downstream from five wastewater treatment plants (WWTPs) in the Meuse watershed. After the exposure, a battery of biomarkers was measured and results were compiled in an Integrated Biomarker Response (IBR) for each species. A multispecies IBR value was then proposed to assess the quality of the receiving environment upstream the WWTPs. The effluent toxicity was variable according to the caged species and the WWTP. However, the calculated IBR were high for all species and upstream sites, suggesting that the water quality was already downgraded upstream the WWTP. This contamination of the receiving environment was confirmed by the multispecies IBR which has allowed to rank the rivers from the less to the most contaminated. This study has demonstrated the interest of the IBR in the assessment of biological impacts of a point-source contamination (WWTP effluent) but also of the receiving environment, thanks to the use of independent references. Moreover, this study has highlighted the complementarity between the different species and has emphasized the interest of this multispecies approach to consider the variability of the species exposition pathway and sensibility as well as the mechanism of contaminants toxicity in the final diagnosis.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Animales , Monitoreo Biológico , Ecosistema , Ríos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
8.
PLoS One ; 16(11): e0260354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34843526

RESUMEN

Environmental metabolomics has become a growing research field to understand biological and biochemical perturbations of organisms in response to various abiotic or biotic stresses. It focuses on the comprehensive and systematic analysis of a biologic system's metabolome. This allows the recognition of biochemical pathways impacted by a stressor, and the identification of some metabolites as biomarkers of potential perturbations occurring in a body. In this work, we describe the development and optimization of a complete reliable methodology based on liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) for untargeted metabolomics studies within a fish model species, the three-spined stickleback (Gasterosteus aculeatus). We evaluated the differences and also the complementarities between four different matrices (brain, gills, liver and whole fish) to obtain metabolome information. To this end, we optimized and compared sample preparation and the analytical method, since the type and number of metabolites detected in any matrix are closely related to these latter. For the sample preparation, a solid-liquid extraction was performed on a low quantity of whole fish, liver, brain, or gills tissues using combinations of methanol/water/heptane. Based on the numbers of features observed in LC-HRMS and on the responses of analytical standards representative of different metabolites groups (amino acids, sugars…), we discuss the influence of the nature, volume, and ratio of extraction solvents, the sample weight, and the reconstitution solvent. Moreover, the analytical conditions (LC columns, pH and additive of mobile phases and ionization modes) were also optimized so as to ensure the maximum metabolome coverages. Thus, two complementary chromatographic procedures were combined in order to cover a broader range of metabolites: a reversed phase separation (RPLC) on a C18 column followed by detection with positive ionization mode (ESI+) and a hydrophilic interaction chromatography (HILIC) on a zwitterionic column followed by detection with negative ionization mode (ESI-). This work provides information on brain, gills, liver, vs the whole body contribution to the stickleback metabolome. These information would help to guide ecotoxicological and biomonitoring studies.


Asunto(s)
Metaboloma , Smegmamorpha/metabolismo , Animales , Encéfalo/metabolismo , Cromatografía Liquida , Femenino , Branquias/metabolismo , Hígado/metabolismo , Masculino , Espectrometría de Masas , Metabolómica , Flujo de Trabajo
9.
Ecotoxicol Environ Saf ; 225: 112727, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34481353

RESUMEN

The potential health risks associated with the pharmaceuticals released into the environment through effluents from sewage treatment plants have become a major cause for concern. Owing to the lack of effective indicators, monitoring the concentration of these pollutants in the aquatic environment is challenging. The aim of this study was to assess the toxicity of a mixture of five pharmaceutical drugs (paracetamol, carbamazepine, diclofenac, irbesartan, and naproxen) using the aquatic moss Fontinalis antipyretica as a bioindicator and bioaccumulator. We examined the effects of the drug mixture on the cellular antioxidant system, chlorophyll content, and morphological traits of F. antipyretica. The plant was exposed for 5 months to three concentrations of the mixture, including the environmental concentration (MX1), and 10- (MX10) and 100-times (MX100) the environmental concentration. The results showed that only carbamazepine and irbesartan were accumulated by the species. The bioconcentration level increased with exposure time, with the maximum uptake at the 4th month of exposure. The increase in bioaccumulation with exposure time was more evident in plants exposed to MX100. Analysis of the activity of antioxidant enzymes showed that superoxide dismutase (SOD, EC 1.15.1.1.) and catalase (EC 1.11.1.6.) were highly sensitive to the drug mixture. The activity of the enzymes was significantly higher in plants exposed to MX100; however, the activity of guaiacol peroxidase (GPX, EC 1.11.1.7.) was not significantly affected. Plants exposed to MX10 and MX100 had significantly lower total chlorophyll content and chlorophyll a/b ratio compared with those of plants in the control group; however, photosynthetic activity was restored after 5 months of exposure. The morphological characteristics of F. antipyretica were less sensitive to the treatment conditions.


Asunto(s)
Bryopsida , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Antioxidantes , Bryopsida/metabolismo , Catalasa/metabolismo , Clorofila A , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/toxicidad
10.
Ecotoxicol Environ Saf ; 223: 112580, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34352578

RESUMEN

The relevance of a biomarker for biomonitoring programs was influenced both by the knowledge on biomarker natural inter-individual and site variabilities and by the sensitivity of the biomarker towards environmental perturbations. To minimize data misinterpretation, robustness reference values for biomarkers were important in biomonitoring programs. Specific three-spined stickleback, Gasterosteus aculeatus, immune reference ranges for field studies had been determined based on laboratory data and one reference station (Contentieuse river at Houdancourt). In this study, data obtained in one uncontaminated and three contaminated sites were compared to these reference ranges as a validation step before considering them for larger scale biomonitoring programs. When the field reference range were compared to data from the uncontaminated station (Béronelle), only few deviations were shown. In this way, data coming from uncontaminated station (Béronelle) was integrated in the field reference ranges to improve the evaluation of site variability. The new field reference ranges provided better discrimination of sites and spanned a larger range of fish lengths than the initial reference ranges. Furthermore, the results suggest lysosomal presence during several months and phagocytosis capacity in autumn may be the most relevant immunomarkers towards identifying contaminated sites. In the future, combining this reference value approach with active biomonitoring could facilitate the obtention of data in multiple stream conditions.


Asunto(s)
Monitoreo del Ambiente , Smegmamorpha , Animales , Monitoreo Biológico , Valores de Referencia , Ríos
11.
Ecotoxicol Environ Saf ; 221: 112454, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34214917

RESUMEN

Pharmaceuticals are emerging pollutants of concern for aquatic ecosystems where they are occurring in complex mixtures. In the present study, the chronic toxicity of an environmentally relevant pharmaceutical mixture on juvenile rainbow trout (Oncorhynchus mykiss) was investigated. Five pharmaceuticals (paracetamol, carbamazepine, diclofenac, naproxen and irbesartan) were selected based on their detection frequency and concentration levels in the Meuse river (Belgium). Fish were exposed for 42 days to three different concentrations of the mixture, the median one detected in the Meuse river, 10-times and 100-times this concentration. Effects on the nervous, immune, antioxidant, and detoxification systems were evaluated throughout the exposure period and their response standardized using the Integrated Biomarker Response (IBRv2) index. IBRv2 scores increased over time in the fish exposed to the highest concentration. After 42 days, fish exposed to the highest concentration displayed significantly higher levels in lysozyme activity (p < 0.01). The mixture also caused significant changes in brain serotonin turnover (p < 0.05). In short, our results indicate that the subchronic waterborne exposure to a pharmaceutical mixture commonly occurring in freshwater ecosystems may affect the neuroendocrine and immune systems of juvenile rainbow trout.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua/toxicidad , Acetaminofén/toxicidad , Animales , Bélgica , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Carbamazepina/toxicidad , Diclofenaco/toxicidad , Irbesartán/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Lisosomas/metabolismo , Naproxeno/toxicidad , Síndromes de Neurotoxicidad , Ríos , Serotonina/metabolismo
12.
Ecotoxicol Environ Saf ; 208: 111407, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33068981

RESUMEN

The use of a multi-biomarker approach with three-spined sticklebacks (Gasterosteus aculeatus) through an active biomonitoring strategy appears to be a promising tool in water quality assessment. The present work proposes to assess the efficiency of these tools in the discrimination of some sites in a large scale on the Meuse basin in Europe. The study was part of an EU program which aims to assess water quality in the Meuse across the French-Belgian border. Sticklebacks were caged 21 days upstream and downstream from the wastewater treatment plants (WWTPs) of Namur (Belgium), Charleville-Mézières (France), Bouillon (Belgium) and Avesnes-sur-Helpe (France). First, the state of a variety of physiological functions was assessed using a battery of biomarkers that represented innate immunity (leucocyte mortality and distribution, phagocytosis activity, respiratory burst), antioxidant system (GPx, CAT, SOD and total GSH content), oxidative damages to the membrane lipids (TBARS), biotransformation enzymes (EROD, GST), synaptic transmission (AChE) and reproduction system (spiggin and vitellogenin concentration). The impacts of the effluents were first analysed for each biomarker using a mixed model ANOVA followed by post-hoc analyses. Secondly, the global river contamination was assessed using a principal component analysis (PCA) followed by a hierarchical agglomerative clustering (HAC). The results highlighted a small number of effects of WWTP effluents on the physiological parameters in caged sticklebacks. Despite a significant effect of the "localisation" factor (upstream/downstream) in the mixed ANOVA for several biomarkers, post-hoc analyses revealed few differences between upstream and downstream of the WWTPs. Only a significant decrease of innate immune responses was observed downstream from the WWTPs of Avesnes-sur-Helpe and Namur. Other biomarker responses were not impacted by WWTP effluents. However, the multivariate analyses (PCA and HAC) of the biomarker responses helped to clearly discriminate the different study sites from the reference but also amongst themselves. Thus, a reduction of general condition (condition index and HSI) was observed in all groups of caged sticklebacks, associated with a weaker AChE activity in comparison with the reference population. A strong oxidative stress was highlighted in fish caged in the Meuse river at Charleville-Mézières whereas sticklebacks caged in the Meuse river at Namur exhibited weaker innate immune responses than others. Conversely, sticklebacks caged in the Helpe-Majeure river at Avesnes-sur-Helpe exhibited higher immune responses. Furthermore, weak defence capacities were recorded in fish caged in the Semois river at Bouillon. This experiment was the first to propose an active biomonitoring approach using three-spined stickleback to assess such varied environments. Low mortality and encouraging results in site discrimination support the use of this tool to assess the quality of a large number of water bodies.


Asunto(s)
Smegmamorpha/fisiología , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Animales , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Monitoreo del Ambiente , Europa (Continente) , Proteínas de Peces , Francia , Estrés Oxidativo , Ríos , Smegmamorpha/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Vitelogeninas/metabolismo
13.
Chemosphere ; 273: 128530, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33268085

RESUMEN

Acer 35 EC is a widely used insecticide (a binary mixture of lambda-cyhalothrin and acetamiprid) in pest control in many West African countries, particularly in the cotton culture in north Benin. The aim of this study was to investigate the chronic effects of Acer 35 EC on Nile tilapia Oreochromis niloticus juveniles using a multi-biomarker approach under laboratory conditions. For this purpose, fish were exposed to sublethal concentrations of Acer 35 EC (0, 1 and 10% of LC50- 96 h value). After 28 and 56 days of exposure, several biomarkers were measured in males and females including enzymatic activities related to detoxification and oxidative stress, neurotoxicity and immune responses, sex steroid hormones (testosterone, 17ß-estradiol and 11-keto-testosterone) and histological alterations of liver, kidney and gonads. An Integrated Biomarker Response (IBR) was then calculated. The results showed a reduction of cholinesterase activity in muscles, and intercellular superoxide anion production in both sexes. Female steroidogenesis and gametogenesis were affected, especially testosterone levels and oocyte growth. More alterations were observed in liver after exposure to Acer 35 EC. In both sexes, IBR values were higher after 56 days than after 28 days of exposure. In conclusion, based on a large set of biomarkers and IBR values, the chronic exposure to low doses of insecticide Acer 35 EC seems to impair different physiological functions in Nile tilapia juveniles on a time-dependent manner, with a stronger impact on females than on males.


Asunto(s)
Acer , Cíclidos , Insecticidas , África Occidental , Animales , Benin , Biomarcadores , Femenino , Insecticidas/toxicidad , Masculino
14.
Aquat Toxicol ; 224: 105499, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32416570

RESUMEN

Pharmaceutical substances are ubiquitous in the aquatic environment and their concentration levels typically range from ng/L up to several µg/L. Furthermore, as those compounds are designed to be highly biologically active, assessing their impacts on non-target organisms is important. Here, we conducted a mesocosm experiment testing a mixture of five pharmaceuticals (diclofenac, carbamazepine, irbesartan, acetaminophen and naproxen) on fish, three-spined stickleback (Gasterosteus aculeatus). The mixture concentration levels were chosen on the basis of the contamination of the Meuse river in Belgium which had been measured previously during a monitoring campaign undertaken in 2015 and 2016. Three nominal mixture concentration levels were tested: the lowest concentration level mixture was composed by environmentally-relevant concentrations that approximate average realistic values for each pharmaceuticals (Mx1); the two other levels were 10 and 100 times these concentrations. Although no impact on stickleback prey was observed, the mixture significantly impaired the survival of female fish introduced in the mesocosms at the highest treatment level without causing other major differences on fish population structure. Impacts on condition factors of adults and juveniles were also observed at both individual and population levels. Using a modelling approach with an individual-based model coupled to a bioenergetic model (DEB-IBM), we concluded that chronic exposure to environmentally-relevant concentrations of five pharmaceuticals often detected in the rivers did not appear to strongly affect the three-spined stickleback populations. Mechanisms of population regulation may have counteracted the mixture impacts in the mesocosms.


Asunto(s)
Preparaciones Farmacéuticas/análisis , Ríos/química , Smegmamorpha/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad , Acetaminofén/análisis , Acetaminofén/toxicidad , Animales , Bélgica , Carbamazepina/análisis , Carbamazepina/toxicidad , Diclofenaco/análisis , Diclofenaco/toxicidad , Femenino , Modelos Teóricos , Naproxeno/análisis , Naproxeno/toxicidad , Dinámica Poblacional , Smegmamorpha/fisiología , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 698: 134333, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31783456

RESUMEN

Due to their sensitivity to environmental contamination and their link with fish health status, innate immunomarkers are of great interest for environmental risk assessment studies. Nevertheless, the lack of knowledge about the effect of confounding factors can lead to data misinterpretation and false diagnostics. So, the determination of reference values was of huge interest for the integration of biomarkers in biomonitoring programs. Laboratory immunomarker reference ranges (including cellular mortality, leucocyte distribution, phagocytosis activity, respiratory burst and lysosomal presence) that consider three confounding factors (season, sex and body size) were previously developed in three-spined stickleback, Gasterosteus aculeatus, from our husbandry. Usefulness of these reference ranges in biomonitoring programs depends on how they can be transposed to various experimental levels, such as mesocosm (outdoor artificial pond) and field conditions. Immunomarkers were therefore measured every 2 months over 1 year in one mesocosm and in one site assumed to uncontaminated (Houdancourt, field). Differences between immunomarker seasonal variations in mesocosm and field fish on one side and laboratory fish on the other side were quantified: in some cases, seasonal trends were not significant or did not differ between mesocosm and laboratory conditions, but overall, models developed based on data obtained in laboratory conditions were poorly predictive of data obtained in mesocosm or field conditions. To propose valuable field reference ranges, mesocosm and field data were integrated in innate immunomarker modelling in order to strengthen the knowledge on the effect of confounding factors. As in laboratory conditions, sex was overall a confounding factor only for necrotic cell percentage and granulocyte-macrophage distribution and size was a confounding factor only for cellular mortality, leucocyte distribution and phagocytosis activity. Confounding factors explained a large proportion of immunomarker variability in particular for phagocytosis activity and lysosomal presence. Further research is needed to test the field models in a biomonitoring program to compare the sensitivity of immunomarkers to the confounding factors identified in this study and the sensitivity to various levels of pollution.


Asunto(s)
Monitoreo del Ambiente , Smegmamorpha/fisiología , Contaminantes Químicos del Agua/análisis , Animales , Biomarcadores , Valores de Referencia , Reproducibilidad de los Resultados
16.
Sci Total Environ ; 692: 854-867, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31539991

RESUMEN

Bisphenol A (BPA), a well-known endocrine-disrupting chemical, is ubiquitously present in the aquatic environment. Its impacts at the population level on three-spined sticklebacks (Gasterosteus aculeatus) have been studied in artificial streams with low-dose BPA concentrations. The causes explaining the observed effects remained unclear. Here, we used an individual-based model coupled to a Dynamic Energy Budget model to (i) assess the potential of modelling to predict impacts at the population level using individual level laboratory ecotoxicological endpoints and (ii) provide insight on the mechanisms of BPA toxicity in these mesocosms. To do that, both direct and indirect effects of BPA on three-spined sticklebacks were incorporated in the model. Indeed, direct BPA effects on fish have been identified based on literature data whereas indirect effects on sticklebacks have been taken into account using sampling data of their prey from the exposed artificial streams. Results of the modelling showed that direct BPA effects on fish (impacts on gonad formation, growth, male reproductive behavior, eggs and larvae survival) mainly explained the three-spined stickleback population structure in the mesocosms, but indirect effects were not negligible. Hence, this study showed the potential of modelling in risk assessment to predict the impacts on fish population viability from behavioral and physiological effects measured on organisms.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Fenoles/toxicidad , Smegmamorpha/fisiología , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Masculino , Modelos Biológicos , Dinámica Poblacional , Distribución Aleatoria , Ríos
17.
Environ Int ; 130: 104896, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31195222

RESUMEN

This study reports the use of the recently developed EASZY assay that uses transgenic cyp19a1b-GFP zebrafish (Danio rerio) embryos to assess in vivo estrogenic activity of 33 surface (SW) and waste water (WW) samples collected across Europe that were previously well-characterized for estrogen hormones and in vitro estrogenic activity. We showed that 18 out of the 33 SW and WW samples induced estrogenic responses in the EASZY assay leading to a significant and concentration-dependent up-regulation of the ER-regulated cyp19a1b gene expression in the developing brain. The in vivo 17ß-estradiol-equivalents (EEQs) were highly correlated with, both, the chemical analytical risk quotient (RQ) based on steroidal estrogen concentrations and EEQs reported from five different in vitro reporter gene assays. Regression analyses between the vitro and in vivo effect concentrations allowed us to determine an optimal cut-off value for each in vitro assay, above which in vivo responses were observed. These in vitro assay-specific effect-based trigger values (EBTs), ranging from 0.28 to 0.58 ng EEQ/L define the sensitivity and specificity of the individual in vitro assays for predicting a risk associated with substances acting through the same mode of action in water samples. Altogether, this study demonstrates the toxicological relevance of in vitro-based assessment of estrogenic activity and recommends the use of such in vitro/in vivo comparative approach to refine and validate EBTs for mechanism-based bioassays.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Monitoreo del Ambiente/métodos , Estrógenos , Agua Dulce/análisis , Contaminantes Químicos del Agua , Animales , Bioensayo , Estradiol/análisis , Estradiol/toxicidad , Estrógenos/análisis , Estrógenos/toxicidad , Pruebas de Toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
18.
Fish Physiol Biochem ; 45(4): 1261-1276, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31222662

RESUMEN

Caging is an active biomonitoring strategy that employs a sentinel species, sometimes a species naturally absent from the studied site, in the surveillance of water bodies to verify whether biota may be at risk. The main advantage of caging is the possibility to standardize several biotic and abiotic parameters. However, little knowledge is available about the effects of confinement on physiology and metabolism of caged organisms. The aim of this study is to characterize confinement and food access restriction effects, induced via caging experiments using a multi-biomarker approach (biometric data, immunity, antioxidant, metabolic detoxication, and digestive enzymes). The study has been undertaken using the same experiment conducted in ecosystem conditions using three-spined stickleback (Gasterosteus aculeatus) during two different periods: one in April, corresponding to breeding season, and the other in October, outside breeding season. Fifteen fish were maintained for 21 days in different conditions (caged or uncaged and with or without food supply). The main result was that confinement stress had little impact on the biological markers of sticklebacks. However, the stressors seemed to increase the negative effects of food restriction on these biomarkers, when sticklebacks needed more energy, that is, during their breeding period. Outside breeding period, most investigated biomarkers were not impacted by caging. This study showed a way to specify the conditions of application and interpretation of biomarkers during active monitoring to ensure an effective, reliable diagnosis of water body quality.


Asunto(s)
Smegmamorpha/fisiología , Estrés Fisiológico , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Control de la Conducta , Biomarcadores , Femenino , Hígado/metabolismo , Masculino , Reproducción
19.
Ecotoxicol Environ Saf ; 174: 48-57, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30818260

RESUMEN

Knowledge about combined effects of chemicals and temperature on reproductive capacity of fish are rare in literature, especially when it comes to the effects of chronic low-dose chemical exposure combined to the thermal stress. The aim of the study was to evaluate the single and combined effects of temperature (16, 18, 21 °C) and an environmentally relevant concentration of waterborne cadmium (1 µg L-1, nominal concentration) on the reproductive outputs of threespine stickleback (Gasterosteus aculeatus), and their consequences on offspring survival parameters. The high temperature (21 °C) was the only factor that affected parental parameters (gonadosomatic index "GSI", and vitellogenin "VTG" particularly). On females, 21 °C had a stimulating effect on gonadal development evaluated by an early increase, followed by a sharp decrease of GSI, probably indicating gonadal atresia. Promoting effect of temperature was corroborated by an early production of VTG. In vitro fertilization assays showed interesting results, particularly cadmium effects. As it was supposed, high temperature had a negative impact on offspring parameters (significant decrease in survival and an increase of unhatched embryos). Parental exposure to the very low concentration of cadmium had also negative consequences on mortality rate (significant increase) and hatching rate (significant decrease). Our results indicate that in a global warming context, high temperature and its combination with contaminant may impact reproductive capacity of G. aculeatus, by decreasing parental investment (low eggs and/or sperm quality).


Asunto(s)
Cadmio/toxicidad , Smegmamorpha/fisiología , Temperatura , Contaminantes Químicos del Agua/toxicidad , Animales , Femenino , Gónadas/efectos de los fármacos , Masculino , Reproducción/efectos de los fármacos , Agua
20.
Sci Total Environ ; 648: 337-349, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30121033

RESUMEN

Innate immunomarkers reflect both environmental contamination and fish health status, providing useful information in environmental risk assessment studies. Nevertheless, the lack of knowledge about the effect of confounding factors can lead to data misinterpretation and false diagnoses. The aim of this study was to evaluate the impact of three confounding factors (season, sex and body size) on three-spined stickleback innate immunomarkers in laboratory conditions. Results shown strong seasonal variations in stickleback innate immunomarkers, with higher immune capacities in late winter-early spring and a disturbance during the spawning period in late spring-summer. Sex and body size had a season dependant effect on almost all tested immunomarkers. Reference ranges were established in laboratory-controlled conditions (i.e. laboratory reference ranges) and compared with data obtained from in vivo chemical expositions. The predictive power of the statistical model depended on the immunomarker, but the control data of the in vivo experiments, realized in same laboratory conditions, were globally well include in the laboratory reference ranges. Moreover, some statistical effects of the in vivo exposures were correlated with an augmentation of values outside the reference ranges, indicating a possible harmful effect for the organisms. As confounding factors influence is a major limit to integrate immunomarkers in biomonitoring programs, modelling their influence on studied parameter may help to better evaluated environmental contaminations.


Asunto(s)
Monitoreo del Ambiente/métodos , Inmunidad Celular , Smegmamorpha , Contaminantes Químicos del Agua/efectos adversos , Factores de Edad , Animales , Biomarcadores/análisis , Cloropirifos/efectos adversos , Endosulfano/efectos adversos , Estradiol/efectos adversos , Estrógenos/efectos adversos , Femenino , Insecticidas/efectos adversos , Masculino , Modelos Biológicos , Valores de Referencia , Estaciones del Año , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...