Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Cells ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667320

RESUMEN

Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain.


Asunto(s)
Amígdala del Cerebelo , Ratones Transgénicos , Neuralgia , Neuronas , Receptores Opioides kappa , Animales , Receptores Opioides kappa/metabolismo , Receptores Opioides kappa/genética , Neuralgia/metabolismo , Neuralgia/fisiopatología , Neuronas/metabolismo , Ratones , Amígdala del Cerebelo/metabolismo , Conducta Animal , Masculino , Clozapina/análogos & derivados , Clozapina/farmacología , Núcleo Amigdalino Central/metabolismo
2.
J Headache Pain ; 25(1): 63, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658853

RESUMEN

Sexual dimorphism has been revealed for many neurological disorders including chronic pain. Prelicinal studies and post-mortem analyses from male and female human donors reveal sexual dimorphism of nociceptors at transcript, protein and functional levels suggesting different mechanisms that may promote pain in men and women. Migraine is a common female-prevalent neurological disorder that is characterized by painful and debilitating headache. Prolactin is a neurohormone that circulates at higher levels in females and that has been implicated clinically in migraine. Prolactin sensitizes sensory neurons from female mice, non-human primates and humans revealing a female-selective pain mechanism that is conserved evolutionarily and likely translationally relevant. Prolactin produces female-selective migraine-like pain behaviors in rodents and enhances the release of calcitonin gene-related peptide (CGRP), a neurotransmitter that is causal in promoting migraine in many patients. CGRP, like prolactin, produces female-selective migraine-like pain behaviors. Consistent with these observations, publicly available clinical data indicate that small molecule CGRP-receptor antagonists are preferentially effective in treatment of acute migraine therapy in women. Collectively, these observations support the conclusion of qualitative sex differences promoting migraine pain providing the opportunity to tailor therapies based on patient sex for improved outcomes. Additionally, patient sex should be considered in design of clinical trials for migraine as well as for pain and reassessment of past trials may be warranted.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Prolactina , Caracteres Sexuales , Trastornos Migrañosos/fisiopatología , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Humanos , Femenino , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Prolactina/metabolismo , Masculino
4.
Brain Commun ; 6(2): fcae051, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38444905

RESUMEN

Migraine and sleep disorders are common co-morbidities. Patients frequently link their sleep to migraine attacks suggesting a potential causal relationship between these conditions. However, whether migraine pain promotes or disrupts sleep or whether sleep disruption can increase the risk of migraine remains unknown. We assessed the potential impact of periorbital allodynia, a measure consistent with migraine-like pain, from multiple preclinical models on sleep quantity and quality. Additionally, we evaluated the possible consequences of sleep deprivation in promoting susceptibility to migraine-like pain. Following the implantation of electroencephalogram/electromyography electrodes to record sleep, mice were treated with either single or repeated systemic injections of nitroglycerin at the onset of their active phase (i.e. nocturnal awake period). Neither single nor repeated nitroglycerin affected the total sleep time, non-rapid eye movement sleep, rapid eye movement sleep, sleep depth or other measures of sleep architecture. To account for the possible disruptive effects of the surgical implantation of electroencephalogram/electromyography electrodes, we used immobility recordings as a non-invasive method for assessing sleep-wake behaviour. Neither single nor repeated nitroglycerin administration during either the mouse sleep (i.e. daylight) or active (i.e. night) periods influenced immobility-defined sleep time. Administration of an inflammatory mediator mixture onto the dura mater at either sleep or active phases also did not affect immobility-defined sleep time. Additionally, inhalational umbellulone-induced migraine-like pain in restraint-stressed primed mice did not alter immobility-defined sleep time. The possible influence of sleep disruption on susceptibility to migraine-like pain was evaluated by depriving female mice of sleep over 6 h with novel objects, a method that does not increase circulating stress hormones. Migraine-like pain was not observed following acute sleep deprivation. However, in sleep-deprived mice, subthreshold doses of systemic nitroglycerin or dural calcitonin gene-related peptide induced periorbital cutaneous allodynia consistent with migraine-like pain. Our data reveal that while migraine-like pain does not significantly disrupt sleep, sleep disruption increases vulnerability to migraine-like pain suggesting that a therapeutic strategy focused on improving sleep may diminish migraine attacks.

5.
Cephalalgia ; 44(3): 3331024241238153, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38477313

RESUMEN

BACKGROUND: Women show increased prevalence and severity of migraine compared to men. Whether small molecule calcitonin gene-related peptide receptor (CGRP-R) antagonists (i.e., gepants) and monoclonal antibodies targeting either the CGRP-R or the CGRP peptide might show sexually dimorphic outcomes for acute and preventive therapy has not been established. METHODS: We conducted a subpopulation analysis of available published data from FDA reviews to evaluate potential sex differences in the response rates of ubrogepant, rimegepant and zavegepant for acute migraine therapy. Available data from FDA reviews of erenumab, fremanezumab, galcanezumab and eptinezumab, approved CGRP-R and CGRP monoclonal antibodies and of atogepant were examined for prevention outcomes based on patient sex. Preventive outcomes were analyzed separately for patients with episodic migraine and chronic migraine. RESULTS: In women, the three approved gepants produced statistically significant drug effects regardless of dose tested on the FDA mandated co-primary endpoints, the proportion of patients achieving two-hour pain-freedom and the proportion of patients free of their most bothersome symptom at two hours post-dose. In women, the average placebo-subtracted two-hour pain-freedom proportion was 9.5% (CI: 7.4 to 11.6) and the average numbers needed to treat was 11. The free from most bothersome symptom at two hours outcomes were also significant in women. The gepant drugs did not reach statistically significant effects on the two-hour pain-freedom endpoint in the men, with an average drug effect of 2.8% (CI: -2.5 to 8.2) and an average number needed to treat of 36. For freedom from most bothersome symptom at two hours post-dose endpoint, differences were not significant in male patients. The treatment effect in each of the gepant studies was always numerically greater in women than in men. In evaluation of prevention outcomes with the antibodies or atogepant using the change from the specified primary endpoint (e.g., monthly migraine days), the observed treatment effect for episodic migraine patients almost always favored drug over placebo in both women and men. For chronic migraine patients the treatment effects of antibodies were similar in men and women and always favored the drug treated group.Conclusion/Interpretation: Small molecule CGRP-R antagonists are effective in acute migraine therapy in women but available data do not demonstrate effectiveness in men. CGRP-targeting therapies are effective for migraine prevention in both male and female episodic migraine patients but possible sex differences remain uncertain. In male and female chronic migraine patients, CGRP/CGRP-R antibodies were similarly effective. The data highlight possible differential effects of CGRP targeted therapies in different patient populations and the need for increased understanding of CGRP neurobiology in men and women.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Piperidinas , Piridinas , Pirroles , Compuestos de Espiro , Femenino , Humanos , Masculino , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Dolor/tratamiento farmacológico
7.
Lancet Neurol ; 23(3): 313-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38365382

RESUMEN

Migraine is a leading cause of disability worldwide. Despite the recent approval of several calcitonin gene-related peptide-targeted therapies, many people with migraine do not achieve satisfactory headache improvement with currently available therapies and there continues to be an unmet need for effective and tolerable migraine-specific treatments. Exploring additional targets that have compelling evidence for their involvement in modulating migraine pathways is therefore imperative. Potential new therapies for migraine include pathways involved in nociception, regulation of homoeostasis, modulation of vasodilation, and reward circuits. Animal and human studies show that these targets are expressed in regions of the CNS and peripheral nervous system that are involved in pain processing, indicating that these targets might be regarded as promising for the discovery of new migraine therapies. Future studies will require assessment of whether targets are suitable for therapeutic modulation, including assessment of specificity, affinity, solubility, stability, efficacy, and safety.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Animales , Humanos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/metabolismo , Cefalea/tratamiento farmacológico , Dolor
8.
Anesthesiology ; 140(2): 272-283, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37725756

RESUMEN

BACKGROUND: The efficiency of descending pain modulation, commonly assessed with the conditioned pain modulation procedure, is diminished in patients with chronic pain. The authors hypothesized that the efficiency of pain modulation is controlled by cortical opioid circuits. METHODS: This study evaluated the effects of µ opioid receptor activation in the anterior cingulate cortex on descending control of nociception, a preclinical correlate of conditioned pain modulation, in male Sprague-Dawley rats with spinal nerve ligation-induced chronic pain or in sham-operated controls. Additionally, the study explored the consequences of respective activation or inhibition of κ opioid receptor in the anterior cingulate cortex of naive rats or animals with neuropathic pain. Descending control of nociception was measured as the hind paw withdrawal response to noxious pressure (test stimulus) in the absence or presence of capsaicin injection in the forepaw (conditioning stimulus). RESULTS: Descending control of nociception was diminished in the ipsilateral, but not contralateral, hind paw of rats with spinal nerve ligation. Bilateral administration of morphine in the anterior cingulate cortex had no effect in shams but restored diminished descending control of nociception without altering hypersensitivity in rats with neuropathic pain. Bilateral anterior cingulate cortex microinjection of κ opioid receptor antagonists, including nor-binaltorphimine and navacaprant, also re-established descending control of nociception in rats with neuropathic pain without altering hypersensitivity and with no effect in shams. Conversely, bilateral injection of a κ opioid receptor agonist, U69,593, in the anterior cingulate cortex of naive rats inhibited descending control of nociception without altering withdrawal thresholds. CONCLUSIONS: Anterior cingulate cortex κ opioid receptor activation therefore diminishes descending control of nociception both in naive animals and as an adaptive response to chronic pain, likely by enhancing net descending facilitation. Descending control of nociception can be restored by activation of µ opioid receptors in the anterior cingulate cortex, but also by κ opioid receptor antagonists, providing a nonaddictive alternative to opioid analgesics. Navacaprant is now in advanced clinical trials.


Asunto(s)
Dolor Crónico , Neuralgia , Humanos , Ratas , Masculino , Animales , Receptores Opioides kappa/metabolismo , Ratas Sprague-Dawley , Antagonistas de Narcóticos/farmacología , Giro del Cíngulo , Nocicepción , Dimensión del Dolor/métodos , Analgésicos Opioides/farmacología
9.
Cephalalgia ; 43(11): 3331024231217469, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-38016977

RESUMEN

BACKGROUND: Post-traumatic headache is very common after a mild traumatic brain injury. Post-traumatic headache may persist for months to years after an injury in a substantial proportion of people. The pathophysiology underlying post-traumatic headache remains unknown but is likely distinct from other headache disorders. Identification of brain areas activated in acute and persistent phases of post-traumatic headache can provide insights into the underlying circuits mediating headache pain. We used an animal model of mild traumatic brain injury-induced post-traumatic headache and c-fos immunohistochemistry to identify brain regions with peak activity levels across the acute and persistent phases of post-traumatic headache. METHODS: Male and female C57BL/6 J mice were briefly anesthetized and subjected to a sham procedure or a weight drop closed-head mild traumatic brain injury . Cutaneous allodynia was assessed in the periorbital and hindpaw regions using von Frey filaments. Immunohistochemical c-fos based neural activity mapping was then performed on sections from whole brain across the development of post-traumatic headache (i.e. peak of the acute phase at 2 days post- mild traumatic brain injury), start of the persistent phase (i.e. >14 days post-mild traumatic brain injury) or after provocation with stress (bright light). Brain areas with consistent and peak levels of c-fos expression across mild traumatic brain injury induced post-traumatic headache were identified and included for further analysis. RESULTS: Following mild traumatic brain injury, periorbital and hindpaw allodynia was observed in both male and female mice. This allodynia was transient and subsided within the first 14 days post-mild traumatic brain injury and is representative of acute post-traumatic headache. After this acute post-traumatic headache phase, exposure of mild traumatic brain injury mice to a bright light stress reinstated periorbital and hindpaw allodynia for several hours - indicative of the development of persistent post-traumatic headache. Acute post-traumatic headache was coincident with an increase in neuronal c-fos labeling in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and the nucleus accumbens. Neuronal activation returned to baseline levels by the persistent post-traumatic headache phase in the spinal nucleus of the trigeminal caudalis and primary somatosensory cortex but remained elevated in the nucleus accumbens. In the persistent post-traumatic headache phase, coincident with allodynia observed following bright light stress, we observed bright light stress-induced c-fos neural activation in the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens. CONCLUSION: Examination of mild traumatic brain injury-induced changes in peak c-fos expression revealed brain regions with significantly increased neural activity across the acute and persistent phases of post-traumatic headache. Our findings suggest mild traumatic brain injury-induced post-traumatic headache produces neural activation along pain relevant pathways at time-points matching post-traumatic headache-like pain behaviors. These observations suggest that the spinal nucleus of the trigeminal caudalis, primary somatosensory cortex, and nucleus accumbens may contribute to both the induction and maintenance of post-traumatic headache.


Asunto(s)
Conmoción Encefálica , Cefalea Postraumática , Humanos , Ratones , Masculino , Femenino , Animales , Cefalea Postraumática/etiología , Hiperalgesia/metabolismo , Ratones Endogámicos C57BL , Cefalea/metabolismo , Encéfalo , Dolor
10.
Brain Res ; 1821: 148613, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37783263

RESUMEN

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson's disease (PD) and following the development of l-DOPA-induced dyskinesia (LID). It remains unclear whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) via measuring of tonic levels of striatal DA. While nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, it affected the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of l-DOPA in a rat PD model with a moderate striatal 6-hydroxdopamine (6-OHDA) lesion. We tested five escalating doses of l-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg l-DOPA doses. However, after reaching the 72 mg/kg l-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of l-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we observed an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Ratas , Animales , Levodopa/efectos adversos , Dopamina , Receptores Opioides kappa , Ratas Sprague-Dawley , Enfermedad de Parkinson/tratamiento farmacológico , Cuerpo Estriado , Oxidopamina/toxicidad , Modelos Animales de Enfermedad
11.
MAbs ; 15(1): 2254676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37698877

RESUMEN

Prolactin (PRL) has recently been demonstrated to elicit female-selective nociceptor sensitization and increase pain-like behaviors in female animals. Here we report the discovery and characterization of first-in-class, humanized PRL neutralizing monoclonal antibodies (PRL mAbs). We obtained two potent and selective PRL mAbs, PL 200,031 and PL 200,039. PL 200,031 was engineered as human IgG1 whereas PL 200,039 was reformatted as human IgG4. Both mAbs have sub-nanomolar affinity for human PRL (hPRL) and produce concentration-dependent and complete inhibition of hPRL signaling at the hPRL receptor (hPRLR). These two PRL mAbs are selective for hPRL as they do not inhibit other hPRLR agonists such as human growth hormone or placental lactogen. They also cross-react with non-human primate PRL but not with rodent PRL. Further, both mAbs show long clearance half-lives after intravenous administration in FcRn-humanized mice. Consistent with their isotypes, these mAbs only differ in binding affinities to Fcγ receptors, as expected by design. Finally, PL 200,019, the murine parental mAb of PL 200,031 and PL 200,039, fully blocked stress-induced and PRL-dependent pain behaviors in female PRL-humanized mice, thereby providing in vivo preclinical proof-of-efficacy for PRL mAbs in mechanisms relevant to pain in females.


Asunto(s)
Prolactina , Receptores de Prolactina , Femenino , Ratones , Animales , Embarazo , Prolactina/metabolismo , Prolactina/farmacología , Receptores de Prolactina/metabolismo , Anticuerpos Monoclonales , Placenta/metabolismo , Unión Proteica
12.
bioRxiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37577558

RESUMEN

Levels of the opioid peptide dynorphin, an endogenous ligand selective for kappa-opioid receptors (KORs), its mRNA and pro-peptide precursors are differentially dysregulated in Parkinson disease (PD) and following the development of L-DOPA-induced dyskinesia (LID). It remains unclear, whether these alterations contribute to the pathophysiological mechanisms underlying PD motor impairment and the subsequent development of LID, or whether they are part of compensatory mechanisms. We sought to investigate nor-BNI, a KOR antagonist, 1) in the dopamine (DA)-depleted PD state, 2) during the development phase of LID, and 3) with measuring tonic levels of striatal DA. Nor-BNI (3 mg/kg; s.c.) did not lead to functional restoration in the DA-depleted state, but a change in the dose-dependent development of abnormal voluntary movements (AIMs) in response to escalating doses of L-DOPA in a rat PD model with a moderate striatal 6-hydroxydopamine (6-OHDA) lesion. We tested five escalating doses of L-DOPA (6, 12, 24, 48, 72 mg/kg; i.p.), and nor-BNI significantly increased the development of AIMs at the 12 and 24 mg/kg L-DOPA doses. However, after dosing with 72 mg/kg L-DOPA, AIMs were not significantly different between control and nor-BNI groups. In summary, while blocking KORs significantly increased the rate of development of LID induced by chronic, escalating doses of L-DOPA in a moderate-lesioned rat PD model, it did not contribute further once the overall severity of LID was established. While we saw an increase of tonic DA levels in the moderately lesioned dorsolateral striatum, there was no tonic DA change following administration of nor-BNI.

13.
JAMA Neurol ; 80(9): 885-886, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37486684

RESUMEN

This Viewpoint describes the relevance of sex-specific differences in the treatment of migraine, including in evidence from trials of CGRP therapeutics, and the clinical implications for decision-making in practice and trial design.


Asunto(s)
Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Trastornos Migrañosos , Humanos , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina/uso terapéutico , Trastornos Migrañosos/tratamiento farmacológico , Péptido Relacionado con Gen de Calcitonina
14.
Pharmacol Ther ; 247: 108435, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169264

RESUMEN

Women experience chronic pain more often than men with some pain conditions being specific to women while others are more prevalent in women. Prolactin, a neuropeptide hormone with higher serum levels in women, has recently been demonstrated in preclinical studies to sensitize nociceptive sensory neurons in a sexually dimorphic manner. Dysregulation of prolactin and prolactin receptors may be responsible for increased pain especially in female predominant conditions such as migraine, fibromyalgia, and pelvic pain. In this review, we focus on the role of prolactin in endometriosis, a condition characterized by pelvic pain and infertility that affects a large proportion of women during their reproductive age. We discuss the symptoms and pathology of endometriosis and discuss how different sources of prolactin secretion may contribute to this disease. We highlight our current understanding of prolactin-mediated mechanisms of nociceptor sensitization in females and how this mechanism may apply to endometriosis. Lastly, we report the results of a systematic review of clinical studies conducted by searching the PubMed and EMBASE databases to identify association between endometriosis and blood levels of prolactin. The results of this search strongly indicate that serum prolactin levels are increased in patients with endometriosis and support the possibility that high levels of prolactin may promote pelvic pain in these patients and increase vulnerability to other comorbid pain conditions likely by dysregulating prolactin receptor expression. Targeting of prolactin and prolactin receptors may improve management of pain associated with endometriosis.


Asunto(s)
Dolor Crónico , Endometriosis , Femenino , Humanos , Endometriosis/complicaciones , Endometriosis/metabolismo , Prolactina , Receptores de Prolactina , Dolor Pélvico/complicaciones
15.
Nat Rev Dis Primers ; 9(1): 5, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732518

RESUMEN

Medication overuse headache (MOH) is a secondary headache disorder attributed to overuse of acute headache medications by a person with an underlying headache disorder, usually migraine or tension-type headache. MOH is common among individuals with 15 or more headache days per month. Although MOH is associated with substantial disability and reductions in quality of life, this condition is often under-recognized. As MOH is both preventable and treatable, it warrants greater attention and awareness. The diagnosis of MOH is based on the history and an unremarkable neurological examination, and is made according to the diagnostic criteria of the International Classification of Headache Disorders third edition (ICHD-3). Pathophysiological mechanisms of MOH include altered descending pain modulation, central sensitization and biobehavioural factors. Treatment of MOH includes the use of headache preventive therapies, but essential to success is eliminating the cause, by reducing the frequency of use of acute headache medication, and perhaps withdrawing the overused medication altogether. Appropriate treatment is usually highly effective, leading to reduced headache burden and acute medication consumption.


Asunto(s)
Cefaleas Secundarias , Trastornos Migrañosos , Humanos , Calidad de Vida , Cefaleas Secundarias/diagnóstico , Cefalea/etiología , Trastornos Migrañosos/diagnóstico , Trastornos Migrañosos/tratamiento farmacológico
16.
Pain ; 164(6): e263-e273, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36625833

RESUMEN

ABSTRACT: Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.


Asunto(s)
Hiperalgesia , Prolactina , Masculino , Ratones , Femenino , Animales , Hiperalgesia/inducido químicamente , Receptores Opioides kappa/metabolismo , Cabergolina , Dolor , Isoformas de Proteínas
17.
Brain ; 146(3): 1186-1199, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35485490

RESUMEN

Increased vigilance in settings of potential threats or in states of vulnerability related to pain is important for survival. Pain disrupts sleep and conversely, sleep disruption enhances pain, but the underlying mechanisms remain unknown. Chronic pain engages brain stress circuits and increases secretion of dynorphin, an endogenous ligand of the kappa opioid receptor (KOR). We therefore hypothesized that hypothalamic dynorphin/KOR signalling may be a previously unknown mechanism that is recruited in pathological conditions requiring increased vigilance. We investigated the role of KOR in wakefulness, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep in freely moving naïve mice and in mice with neuropathic pain induced by partial sciatic nerve ligation using EEG/EMG recordings. Systemic continuous administration of U69,593, a KOR agonist, over 5 days through an osmotic minipump decreased the amount of NREM and REM sleep and increased sleep fragmentation in naïve mice throughout the light-dark sleep cycle. We used KORcre mice to selectively express a Gi-coupled designer receptor activated by designer drugs (Gi-DREADD) in KORcre neurons of the hypothalamic paraventricular nucleus, a key node of the hypothalamic-pituitary-adrenal stress response. Sustained activation of Gi-DREADD with clozapine-N-oxide delivered in drinking water over 4 days, disrupted sleep in these mice in a similar way as systemic U69,593. Mice with chronic neuropathic pain also showed disrupted NREM and total sleep that was normalized by systemic administration of two structurally different KOR antagonists, norbinaltorphimine and NMRA-140, currently in phase II clinical development, or by CRISPR/Cas9 editing of paraventricular nucleus KOR, consistent with endogenous KOR activation disrupting sleep in chronic pain. Unexpectedly, REM sleep was diminished by either systemic KOR antagonist or by CRISPR/Cas9 editing of paraventricular nucleus KOR in sham-operated mice. Our findings reveal previously unknown physiological and pathophysiological roles of dynorphin/KOR in eliciting arousal. Physiologically, dynorphin/KOR signalling affects transitions between sleep stages that promote REM sleep. Furthermore, while KOR antagonists do not promote somnolence in the absence of pain, they normalized disrupted sleep in chronic pain, revealing a pathophysiological role of KOR signalling that is selectively recruited to promote vigilance, increasing chances of survival. Notably, while this mechanism is likely beneficial in the short-term, disruption of the homeostatic need for sleep over longer periods may become maladaptive resulting in sustained pain chronicity. A novel approach for treatment of chronic pain may thus result from normalization of chronic pain-related sleep disruption by KOR antagonism.


Asunto(s)
Dolor Crónico , Neuralgia , Ratones , Animales , Receptores Opioides kappa , Dinorfinas , Vigilia , Antagonistas de Narcóticos/farmacología
18.
J Headache Pain ; 23(1): 126, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36175828

RESUMEN

BACKGROUND: The migraine premonitory phase is characterized in part by increased thirst, urination and yawning. Imaging studies show that the hypothalamus is activated in the premonitory phase. Stress is a well know migraine initiation factor which was demonstrated to engage dynorphin/kappa opioid receptors (KOR) signaling in several brain regions, including the hypothalamus. This study proposes the exploration of the possible link between hypothalamic KOR and migraine premonitory symptoms in rodent models. METHODS: Rats were treated systemically with the KOR agonist U-69,593 followed by yawning and urination monitoring. Apomorphine, a dopamine D1/2 agonist, was used as a positive control for yawning behaviors. Urination and water consumption following systemic administration of U-69,593 was also assessed. To examine if KOR activation specifically in the hypothalamus can promote premonitory symptoms, AAV8-hSyn-DIO-hM4Di (Gi-DREADD)-mCherry viral vector was microinjected into the right arcuate nucleus (ARC) of female and male KORCRE or KORWT mice. Four weeks after the injection, clozapine N-oxide (CNO) was administered systemically followed by the assessment of urination, water consumption and tactile sensory response. RESULTS: Systemic administration of U-69,593 increased urination but did not produce yawning in rats. Systemic KOR agonist also increased urination in mice as well as water consumption. Cell specific Gi-DREADD activation (i.e., inhibition through Gi-coupled signaling) of KORCRE neurons in the ARC also increased water consumption and the total volume of urine in mice but did not affect tactile sensory responses. CONCLUSION: Our studies in rodents identified the KOR in a hypothalamic region as a mechanism that promotes behaviors consistent with clinically-observed premonitory symptoms of migraine, including increased thirst and urination but not yawning. Importantly, these behaviors occurred in the absence of pain responses, consistent with the emergence of the premonitory phase before the headache phase. Early intervention for preventive treatment even before the headache phase may be achievable by targeting the hypothalamic KOR.


Asunto(s)
Trastornos Migrañosos , Receptores Opioides kappa , Animales , Apomorfina , Dopamina , Dinorfinas , Femenino , Cefalea , Hipotálamo , Masculino , Ratones , Ratas
19.
Front Pharmacol ; 13: 903978, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694266

RESUMEN

Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.

20.
Headache ; 62(6): 726-736, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35670213

RESUMEN

OBJECTIVE: The purpose of this study was to characterize cutaneous heat and light-induced pain thresholds in people with post-traumatic headache (PTH) compared with healthy controls (HCs). BACKGROUND: Photophobia and allodynia are common in PTH, and there is emerging evidence to support multimodal sensory dysfunction. METHODS: In this age- and sex-matched cohort study, individuals with PTH (n = 20) and HCs (n = 20), aged 18-65 years, were recruited from an institutional database of research volunteers, from the concussion clinic, and via the use of approved flyers posted on the Mayo Clinic Campus in Scottsdale, Arizona. Participants were assessed using the Allodynia Symptom Checklist (ASC-12), Photosensitivity Assessment Questionnaire (PAQ), State Trait Anxiety Inventory (STAI), and Beck Depression Inventory (BDI). Quantitative sensory testing quantified heat pain thresholds. A light stimulation device quantified light-induced pain thresholds. Subsequently, heat pain thresholds were obtained immediately, 10, and 40 min after a bright light stressor. RESULTS: The mean photophobia symptom severity score, based on the PAQ, was higher in participants with PTH compared with HCs, mean 0.62 (SD = 0.25) versus mean 0.24 (SD = 0.24), p < 0.001. Light-induced pain thresholds were lower in participants with PTH (median = 90.5 lux and quartiles = 17.8 to 378.5) compared with HCs (median = 863.5 lux and quartiles = 519.9 to 4906.5) and were independent from BDI and STAI (p < 0.001). Allodynia scores did not differ between participants with PTH and HCs after adjusting for BDI and STAI scores. Baseline forehead heat pain thresholds were not different, participants with PTH mean 41.9°C (SD = 0.89) versus HCs mean 44.3°C (SD = 0.89), p = 0.061; however, forearm heat pain thresholds were lower in participants with PTH compared with HCs, mean 40.8°C (SD = 0.80) versus mean 44.4°C (SD = 0.80), p = 0.002. The forehead heat pain threshold change from baseline post bright light stressor in participants with PTH versus HCs was different immediately (mean -1.2 (SD = 0.53), p = 0.025), 10 min (mean -1.8 (SD = 0.74), p = 0.015), and 40 min (mean -1.8 (SD = 0.88), p = 0.047). The forearm heat pain threshold change immediately post bright light stressor in participants with PTH versus HCs was different, mean -1.9°C (SD = 0.58), p = 0.001, however, not different at 10 and 40 min. CONCLUSIONS: Photophobia is higher and light-induced pain thresholds are lower in participants with PTH. Exposure to a light stressor reduced heat pain thresholds in participants with PTH immediately post bright light stressor, but not in HCs. This study provides evidence for multimodal sensory dysfunction in people with PTH.


Asunto(s)
Conmoción Encefálica , Cefalea Postraumática , Conmoción Encefálica/complicaciones , Estudios de Cohortes , Calor , Humanos , Hiperalgesia/etiología , Dolor , Umbral del Dolor , Fotofobia/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...