Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Comput Biol Med ; 174: 108346, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581999

RESUMEN

Non-Communicable Diseases (NCDs) significantly impact global health, contributing to over 70% of premature deaths, as reported by the World Health Organization (WHO). These diseases have complex and multifactorial origins, involving genetic, epigenetic, environmental and lifestyle factors. While Genome-Wide Association Study (GWAS) is widely recognized as a valuable tool for identifying variants associated with complex phenotypes; the multifactorial nature of NCDs necessitates a more comprehensive exploration, encompassing not only the genetic but also the epigenetic aspect. For this purpose, we employed a bioinformatics-multiomics approach to examine the genetic and epigenetic characteristics of NCDs (i.e. colorectal cancer, coronary atherosclerosis, squamous cell lung cancer, psoriasis, type 2 diabetes, and multiple sclerosis), aiming to identify novel biomarkers for diagnosis and prognosis. Leveraging GWAS summary statistics, we pinpointed Single Nucleotide Polymorphisms (SNPs) independently associated with each NCD. Subsequently, we identified genes linked to cell cycle, inflammation and oxidative stress mechanisms, revealing shared genes across multiple diseases, suggesting common functional pathways. From an epigenetic perspective, we identified microRNAs (miRNAs) with regulatory functions targeting these genes of interest. Our findings underscore critical genetic pathways implicated in these diseases. In colorectal cancer, the dysregulation of the "Cytokine Signaling in Immune System" pathway, involving LAMA5 and SMAD7, regulated by Hsa-miR-21-5p, Hsa-miR-103a-3p, and Hsa-miR-195-5p, emerged as pivotal. In coronary atherosclerosis, the pathway associated with "binding of TCF/LEF:CTNNB1 to target gene promoters" displayed noteworthy implications, with the MYC factor controlled by Hsa-miR-16-5p as a potential regulatory factor. Squamous cell lung carcinoma analysis revealed significant pathways such as "PTK6 promotes HIF1A stabilization," regulated by Hsa-let-7b-5p. In psoriasis, the "Endosomal/Vacuolar pathway," involving HLA-C and Hsa-miR-148a-3p and Hsa-miR-148b-3p, was identified as crucial. Type 2 Diabetes implicated the "Regulation of TP53 Expression" pathway, controlled by Hsa-miR-106a-5p and Hsa-miR-106b-5p. In conclusion, our study elucidates the genetic framework and molecular mechanisms underlying NCDs, offering crucial insights into potential genetic/epigenetic biomarkers for diagnosis and prognosis. The specificity of pathways and related miRNAs in different pathologies highlights promising candidates for further clinical validation, with the potential to advance personalized treatments and alleviate the global burden of NCDs.


Asunto(s)
Inflamación , MicroARNs , Enfermedades no Transmisibles , Estrés Oxidativo , Polimorfismo de Nucleótido Simple , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Inflamación/genética , Estrés Oxidativo/genética , Estudio de Asociación del Genoma Completo , Transducción de Señal/genética , Epigénesis Genética
2.
Front Cell Dev Biol ; 12: 1343385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434617

RESUMEN

Air pollution, especially fine particulate matter (PM2.5, with an aerodynamic diameter of less than 2.5 µm), represents a risk factor for human health. Many studies, regarding cancer onset and progression, correlated with the short and/or long exposition to PM2.5. This is mainly mediated by the ability of PM2.5 to reach the pulmonary alveoli by penetrating into the blood circulation. This review recapitulates the methodologies used to study PM2.5 in cellular models and the downstream effects on the main molecular pathways implicated in cancer. We report a set of data from the literature, that describe the involvement of miRNAs or long noncoding RNAs on the main biological processes involved in oxidative stress, inflammation, autophagy (PI3K), cell proliferation (NFkB, STAT3), and EMT (Notch, AKT, Wnt/ß-catenin) pathways. microRNAs, as well as gene expression profile, responds to air pollution environment modulating some key genes involved in epigenetic modification or in key mediators of the biological processes described below. In this review, we provide some scientific evidences about the thigh correlation between miRNAs dysregulation, PM2.5 exposition, and gene pathways involved in cancer progression.

3.
Comput Struct Biotechnol J ; 21: 5395-5407, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022694

RESUMEN

Neurodegenerative diseases (ND) are heterogeneous disorders of the central nervous system that share a chronic and selective process of neuronal cell death. A computational approach to investigate shared genetic and specific loci was applied to 5 different ND: Amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Multiple sclerosis (MS), and Lewy body dementia (LBD). The datasets were analyzed separately, and then we compared the obtained results. For this purpose, we applied a genetic correlation analysis to genome-wide association datasets and revealed different genetic correlations with several human traits and diseases. In addition, a clumping analysis was carried out to identify SNPs genetically associated with each disease. We found 27 SNPs in AD, 6 SNPs in ALS, 10 SNPs in PD, 17 SNPs in MS, and 3 SNPs in LBD. Most of them are located in non-coding regions, with the exception of 5 SNPs on which a protein structure and stability prediction was performed to verify their impact on disease. Furthermore, an analysis of the differentially expressed miRNAs of the 5 examined pathologies was performed to reveal regulatory mechanisms that could involve genes associated with selected SNPs. In conclusion, the results obtained constitute an important step toward the discovery of diagnostic biomarkers and a better understanding of the diseases.

4.
Funct Integr Genomics ; 23(4): 293, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37682415

RESUMEN

Sporadic Alzheimer's disease (AD) is a complex neurological disorder characterized by many risk loci with potential associations with different traits and diseases. AD, characterized by a progressive loss of neuronal functions, manifests with different symptoms such as decline in memory, movement, coordination, and speech. The mechanisms underlying the onset of AD are not always fully understood, but involve a multiplicity of factors. Early diagnosis of AD plays a central role as it can offer the possibility of early treatment, which can slow disease progression. Currently, the methods of diagnosis are cognitive testing, neuroimaging, or cerebrospinal fluid analysis that can be time-consuming, expensive, invasive, and not always accurate. In the present study, we performed a genetic correlation analysis using genome-wide association statistics from a large study of AD and UK Biobank, to examine the association of AD with other human traits and disorders. In addition, since hippocampus, a part of cerebral cortex could play a central role in several traits that are associated with AD; we analyzed the gene expression profiles of hippocampus of AD patients applying 4 different artificial neural network models. We found 65 traits correlated with AD grouped into 9 clusters: medical conditions, fluid intelligence, education, anthropometric measures, employment status, activity, diet, lifestyle, and sexuality. The comparison of different 4 neural network models along with feature selection methods on 5 Alzheimer's gene expression datasets showed that the simple basic neural network model obtains a better performance (66% of accuracy) than other more complex methods with dropout and weight regularization of the network.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Mapeo Cromosómico , Hipocampo , Redes Neurales de la Computación
5.
Commun Biol ; 6(1): 388, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031346

RESUMEN

Despite aggressive therapeutic regimens, glioblastoma (GBM) represents a deadly brain tumor with significant aggressiveness, radioresistance and chemoresistance, leading to dismal prognosis. Hypoxic microenvironment, which characterizes GBM, is associated with reduced therapeutic effectiveness. Moreover, current irradiation approaches are limited by uncertain tumor delineation and severe side effects that comprehensively lead to unsuccessful treatment and to a worsening of the quality of life of GBM patients. Proton beam offers the opportunity of reduced side effects and a depth-dose profile, which, unfortunately, are coupled with low relative biological effectiveness (RBE). The use of radiosensitizing agents, such as boron-containing molecules, enhances proton RBE and increases the effectiveness on proton beam-hit targets. We report a first preclinical evaluation of proton boron capture therapy (PBCT) in a preclinical model of GBM analyzed via µ-positron emission tomography/computed tomography (µPET-CT) assisted live imaging, finding a significant increased therapeutic effectiveness of PBCT versus proton coupled with an increased cell death and mitophagy. Our work supports PBCT and radiosensitizing agents as a scalable strategy to treat GBM exploiting ballistic advances of proton beam and increasing therapeutic effectiveness and quality of life in GBM patients.


Asunto(s)
Glioblastoma , Fármacos Sensibilizantes a Radiaciones , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Glioblastoma/patología , Protones , Boro , Mitofagia , Calidad de Vida , Fármacos Sensibilizantes a Radiaciones/farmacología , Muerte Celular , Microambiente Tumoral
6.
Biotechnol Bioeng ; 120(7): 1929-1952, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37021334

RESUMEN

The design of alternative biodegradable polymers has the potential of severely reducing the environmental impact, cost and production time currently associated with the petrochemical industry. In fact, growing demand for renewable feedstock has recently brought to the fore synthetic biology and metabolic engineering. These two interdependent research areas focus on the study of microbial conversion of organic acids, with the aim of replacing their petrochemical-derived equivalents with more sustainable and efficient processes. The particular case of Lactic acid (LA) production has been the subject of extensive research because of its role as an essential component for developing an eco-friendly biodegradable plastic-widely used in industrial biotechnological applications. Because of its resistance to acidic environments, among the many LA-producing microbes, Saccharomyces cerevisiae has been the main focus of research into related biocatalysts. In this study, we present an extensive in silico investigation of S. cerevisiae cell metabolism (modeled with Flux Balance Analysis) with the overall aim of maximizing its LA production yield. We focus on the yeast 8.3 steady-state metabolic model and analyze it under the impact of different engineering strategies including: gene knock-in, gene knock-out, gene regulation and medium optimization; as well as a comparison between results in aerobic and anaerobic conditions. We designed ad-hoc constrained multiobjective evolutionary algorithms to automate the engineering process and developed a specific postprocessing methodology to analyze the genetic manipulation results obtained. The in silico results reported in this paper empirically show that our method is able to automatically select a small number of promising genetic and metabolic manipulations, deriving competitive strains that promise to impact microorganisms design in the production of sustainable chemicals.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ingeniería Metabólica/métodos , Biotecnología , Ácido Láctico/metabolismo
7.
Hum Genet ; 142(8): 1173-1183, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36773064

RESUMEN

Leveraging genome-wide association statistics generated from a large study of amyotrophic lateral sclerosis (ALS; 29,612 cases and 122,656 controls) and UK Biobank (UKB; 4,024 phenotypes, up to 361,194 participants), we conducted a phenome-wide analysis of ALS genetic liability and identified 46 genetically correlated traits, such as fluid intelligence score (rg = - 0.21, p = 1.74 × 10-6), "spending time in pub or social club" (rg = 0.24, p = 2.77 × 10-6), non-work related walking (rg = - 0.25, p = 1.95 × 10-6), college education (rg = - 0.15, p = 7.08 × 10-5), "ever diagnosed with panic attacks (rg = 0.39, p = 4.24 × 10-5), and "self-reported other gastritis including duodenitis" (rg = 0.28, p = 1.4 × 10-3). To assess the putative directionality of these genetic correlations, we conducted a latent causal variable analysis, identifying significant genetic causality proportions (gcp) linking ALS genetic liability to seven traits. While the genetic component of "self-reported other gastritis including duodenitis" showed a causal effect on ALS (gcp = 0.50, p = 1.26 × 10-29), the genetic liability to ALS is potentially causal for multiple traits, also including an effect on "ever being diagnosed with panic attacks" (gcp = 0.79, p = 5.011 × 10-15) and inverse effects on "other leisure/social group activities" (gcp = 0.66, p = 1 × 10-4) and prospective memory result (gcp = 0.35, p = 0.005). Our subsequent Mendelian randomization analysis indicated that some of these associations may be due to bidirectional effects. In conclusion, this phenome-wide investigation of ALS polygenic architecture highlights the widespread pleiotropy linking this disorder with several health domains.


Asunto(s)
Esclerosis Amiotrófica Lateral , Duodenitis , Gastritis , Humanos , Esclerosis Amiotrófica Lateral/genética , Estudio de Asociación del Genoma Completo , Fenotipo , Análisis de la Aleatorización Mendeliana
8.
PLoS One ; 17(11): e0277235, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36395113

RESUMEN

Modern society grew rapidly over the last few decades and this led to an alarming increase in air pollutants and a worsening of the human health, especially in relation to the respiratory system. Indeed, chronic respiratory diseases were the third main cause of death in 2017, with over 3 million of deaths. Furthermore, the pollution has considerable consequences both for burden medical expenses and environmental. However, the mechanisms linking pollutants to the onset of these diseases remain unclear. Thus, in this study we addressed this problem through the United Kingdom BioBank database, analyzing 170 genome-wide association studies (103 related to respiratory diseases and 67 related to pollutants). We analyzed the genetic correlations and causal relationships of these traits, leveraging the summary statistics and bioinformatics packages such as Linkage Disequilibrium Score Regression and Latent Causal Variable. We obtained 158 significant genetic correlations and subsequently we analyzed them through the Latent Causal Variable analysis, obtaining 20 significant causal relationships. The most significant were between "Workplace full of chemicals or other fumes: Sometimes" and "Condition that has ever been diagnosed by a doctor: Asthma" and between "Workplace very dusty: Sometimes" and "Condition that has ever been diagnosed by a doctor: Emphysema or chronic bronchitis". Finally, we identified single nucleotide polymorphisms independently associated with sveral pollutants to analyze the genes and pathways that could be involved in the onset of the aforementioned respiratory system disorders and that could be useful clinical target. This study highlighted how crucial are the air condition of the working environments and the type of transport used in the onset of respiratory-related morbidity. Based on that, we also suggested some interventions, in order to improve quality life and develop new and eco-friendly society and life style, such as improving indoor air circulation, the use of public transport and urban reforestation.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Enfermedades Respiratorias , Humanos , Estudio de Asociación del Genoma Completo , Contaminantes Atmosféricos/efectos adversos , Enfermedades Respiratorias/etiología , Enfermedades Respiratorias/genética , Sistema Respiratorio
9.
Methods Protoc ; 5(5)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36287050

RESUMEN

Breast cancer (BC) is a heterogeneous disease, affecting millions of women every year. Early diagnosis is crucial to increasing survival. The clinical workup of BC diagnosis involves diagnostic imaging and bioptic characterization. In recent years, technical advances in image processing allowed for the application of advanced image analysis (radiomics) to clinical data. Furthermore, -omics technologies showed their potential in the characterization of BC. Combining information provided by radiomics with -omics data can be important to personalize diagnostic and therapeutic work up in a clinical context for the benefit of the patient. In this review, we analyzed the recent literature, highlighting innovative approaches to combine imaging and biochemical/biological data, with the aim of identifying recent advances in radiogenomics applied to BC. The results of radiogenomic studies are encouraging approaches in a clinical setting. Despite this, as radiogenomics is an emerging area, the optimal approach has to face technical limitations and needs to be applied to large cohorts including all the expression profiles currently available for BC subtypes (e.g., besides markers from transcriptomics, proteomics and miRNomics, also other non-coding RNA profiles).

10.
Methods Mol Biol ; 2513: 179-204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781206

RESUMEN

Microorganisms offer a tremendous potential as cell factories, and they are indeed been used by humans since the previous centuries for biotransformations. Among them, yeasts combine the advantage of a unicellular state with a eukaryotic organization. Moreover, in the era of biorefineries, their biodiversity can offer solutions to specific process constraints. Zygosaccharomyces bailii, an ascomycete budding yeast, is widely known for its peculiar tolerance to different stresses, among which are organic acids. Moreover, the recent reclassification of the species, including diverse hybrids, is further expanding both fundamental and applied interests. It is therefore reasonable that despite the possibility to apply with this yeast some of the molecular tools and protocols routinely used to manipulate Saccharomyces cerevisiae, adjustments and optimizations are necessary. Here we describe in detail the methods for determining chromosome number, size, and aneuploidy, transformation, classical target gene disruption or gene integration, and designing of episomal expression plasmids helpful for engineering the yeast Z. bailii .


Asunto(s)
Saccharomycetales , Zygosaccharomyces , Ácidos , Humanos , Saccharomyces cerevisiae , Saccharomycetales/genética , Zygosaccharomyces/genética , Zygosaccharomyces/metabolismo
11.
Int J Mol Sci ; 23(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35683018

RESUMEN

Prostate cancer (PC) is a male common neoplasm and is the second leading cause of cancer death in American men. PC is traditionally diagnosed by the evaluation of prostate secreted antigen (PSA) in the blood. Due to the high levels of false positives, digital rectal examination and transrectal ultrasound guided biopsy are necessary in uncertain cases with elevated PSA levels. Nevertheless, the high mortality rate suggests that new PC biomarkers are urgently needed to help clinical diagnosis. In a previous study, we have identified a network of genes, altered in high Gleason Score (GS) PC (GS ≥ 7), being regulated by miR-153. Until now, no publication has explained the mechanism of action of miR-153 in PC. By in vitro studies, we found that the overexpression of miR-153 in high GS cell lines is required to control cell proliferation, migration and invasion rates, targeting Kruppel-like factor 5 (KLF5). Moreover, miR-153 could be secreted by exosomes and microvesicles in the microenvironment and, once entered into the surrounding tissue, could influence cellular growth. Being upregulated in high GS human PC, miR-153 could be proposed as a circulating biomarker for PC diagnosis.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Proliferación Celular/genética , Humanos , Masculino , MicroARNs/genética , Clasificación del Tumor , Antígeno Prostático Específico , Neoplasias de la Próstata/metabolismo , Microambiente Tumoral
12.
Chemosphere ; 303(Pt 1): 134947, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35580641

RESUMEN

Polystyrene is a thermoplastic polymer widely used in commercial products. Like all plastics, polystyrene can be degraded into microplastic and nanoplastic particles and ingested via food chain contamination. Although the ecological impact due to plastic contamination is well known, there are no studies indicating a carcinogenic potential of polystyrene microplastics (MPs) and nanoplastics (NPs). Here, we evaluated the effects of the MPs and NPs on normal human intestinal CCD-18Co cells. Our results show that internalization of NPs and MPs induces metabolic changes under both acute and chronic exposure by inducing oxidative stress, increasing glycolysis via lactate to sustain energy metabolism and glutamine metabolism to sustain anabolic processes. We also show that this decoupling of nutrients mirrors the effect of the potent carcinogenic agent azoxymethane and HCT15 colon cancer cells, carrying out the typical strategy of cancer cells to optimize nutrients utilization and allowing metabolic adaptation to environmental stress conditions. Taken together our data provide new evidence that chronic NPs and MPs exposure could act as cancer risk factor for human health.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Colon , Humanos , Microplásticos/toxicidad , Poliestirenos/toxicidad , Factores de Riesgo , Contaminantes Químicos del Agua/análisis
13.
Database (Oxford) ; 20222022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35576001

RESUMEN

Large amounts of data from microbiome-related studies have been (and are currently being) deposited on international public databases. These datasets represent a valuable resource for the microbiome research community and could serve future researchers interested in integrating multiple datasets into powerful meta-analyses. However, this huge amount of data lacks harmonization and it is far from being completely exploited in its full potential to build a foundation that places microbiome research at the nexus of many subdisciplines within and beyond biology. Thus, it urges the need for data accessibility and reusability, according to findable, accessible, interoperable and reusable (FAIR) principles, as supported by National Microbiome Data Collaborative and FAIR Microbiome. To tackle the challenge of accelerating discovery and advances in skin microbiome research, we collected, integrated and organized existing microbiome data resources from human skin 16S rRNA amplicon-sequencing experiments. We generated a comprehensive collection of datasets, enriched in metadata, and organized this information into data frames ready to be integrated into microbiome research projects and advanced post-processing analyses, such as data science applications (e.g. machine learning). Furthermore, we have created a data retrieval and curation framework built on three different stages to maximize the retrieval of datasets and metadata associated with them. Lastly, we highlighted some caveats regarding metadata retrieval and suggested ways to improve future metadata submissions. Overall, our work resulted in a curated skin microbiome datasets collection accompanied by a state-of-the-art analysis of the last 10 years of the skin microbiome field. Database URL:  https://github.com/giuliaago/SKIOMEMetadataRetrieval.


Asunto(s)
Metadatos , Microbiota , Bases de Datos Factuales , Humanos , Almacenamiento y Recuperación de la Información , Microbiota/genética , ARN Ribosómico 16S
14.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36670904

RESUMEN

Cancer utilization of large glutamine equivalents contributes to diverging glucose-6-P flux toward the pentose phosphate shunt (PPP) to feed the building blocks and the antioxidant responses of rapidly proliferating cells. In addition to the well-acknowledged cytosolic pathway, cancer cells also run a largely independent PPP, triggered by hexose-6P-dehydrogenase within the endoplasmic reticulum (ER), whose activity is mandatory for the integrity of ER-mitochondria networking. To verify whether this reticular metabolism is dependent on glutamine levels, we complemented the metabolomic characterization of intermediates of the glucose metabolism and tricarboxylic acid cycle with the estimation of proliferating activity, energy metabolism, redox damage, and mitochondrial function in two breast cancer cell lines. ER-PPP activity and its determinants were estimated by the ER accumulation of glucose analogs. Glutamine shortage decreased the proliferation rate despite increased ATP and NADH levels. It depleted NADPH reductive power and increased malondialdehyde content despite a marked increase in glucose-6P-dehydrogenase. This paradox was explained by the deceleration of ER-PPP favored by the decrease in hexose-6P-dehydrogenase expression coupled with the opposite response of its competitor enzyme glucose-6P-phosphatase. The decreased ER-PPP activity eventually hampered mitochondrial function and calcium exchanges. These data configure the ER-PPP as a powerful, unrecognized regulator of cancer cell metabolism and proliferation.

15.
Foods ; 10(12)2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34945679

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal disease related to upper and lower motor neurons degeneration. Although the environmental and genetic causes of this disease are still unclear, some factors involved in ALS onset such as oxidative stress may be influenced by diet. A higher risk of ALS has been correlated with a high fat and glutamate intake and ß-methylamino-L-alanine. On the contrary, a diet based on antioxidant and anti-inflammatory compounds, such as curcumin, creatine, coenzyme Q10, vitamin E, vitamin A, vitamin C, and phytochemicals could reduce the risk of ALS. However, data are controversial as there is a discrepancy among different studies due to a limited number of samples and the many variables that are involved. In addition, an improper diet could lead to an altered microbiota and consequently to an altered metabolism that could predispose to the ALS onset. In this review we summarized some research that involve aspects related to ALS such as the epidemiology, the diet, the eating behaviour, the microbiota, and the metabolic diseases. Further research is needed to better comprehend the role of diet and the metabolic diseases in the mechanisms leading to ALS onset and progression.

16.
Microb Cell Fact ; 19(1): 204, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33167962

RESUMEN

BACKGROUND: Lipids from oleaginous yeasts emerged as a sustainable alternative to vegetable oils and animal fat to produce biodiesel, the biodegradable and environmentally friendly counterpart of petro-diesel fuel. To develop economically viable microbial processes, the use of residual feedstocks as growth and production substrates is required. RESULTS: In this work we investigated sugar beet pulp (SBP) and molasses, the main residues of sugar beet processing, as sustainable substrates for the growth and lipid accumulation by the oleaginous yeast Lipomyces starkeyi. We observed that in hydrolysed SBP the yeast cultures reached a limited biomass, cellular lipid content, lipid production and yield (2.5 g/L, 19.2%, 0.5 g/L and 0.08 g/g, respectively). To increase the initial sugar availability, cells were grown in SBP blended with molasses. Under batch cultivation, the cellular lipid content was more than doubled (47.2%) in the presence of 6% molasses. Under pulsed-feeding cultivation, final biomass, cellular lipid content, lipid production and lipid yield were further improved, reaching respectively 20.5 g/L, 49.2%, 9.7 g/L and 0.178 g/g. Finally, we observed that SBP can be used instead of ammonium sulphate to fulfil yeasts nitrogen requirement in molasses-based media for microbial oil production. CONCLUSIONS: This study demonstrates for the first time that SBP and molasses can be blended to create a feedstock for the sustainable production of lipids by L. starkeyi. The data obtained pave the way to further improve lipid production by designing a fed-batch process in bioreactor.


Asunto(s)
Beta vulgaris/metabolismo , Biocombustibles , Lípidos/biosíntesis , Lipomyces/metabolismo , Biomasa , Reactores Biológicos , Medios de Cultivo/química , Hidrólisis , Lipomyces/crecimiento & desarrollo , Melaza
17.
Biotechnol Biofuels ; 13: 47, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32190112

RESUMEN

BACKGROUND: As the circular economy advocates a near total waste reduction, the industry has shown an increased interest toward the exploitation of various residual biomasses. The origin and availability of biomass used as feedstock strongly affect the sustainability of biorefineries, where it is converted in energy and chemicals. Here, we explored the valorization of Camelina meal, the leftover residue from Camelina sativa oil extraction. In fact, in addition to Camelina meal use as animal feed, there is an increasing interest in further valorizing its macromolecular content or its nutritional value. RESULTS: Camelina meal hydrolysates were used as nutrient and energy sources for the fermentation of the carotenoid-producing yeast Rhodosporidium toruloides in shake flasks. Total acid hydrolysis revealed that carbohydrates accounted for a maximum of 31 ± 1.0% of Camelina meal. However, because acid hydrolysis is not optimal for subsequent microbial fermentation, an enzymatic hydrolysis protocol was assessed, yielding a maximum sugar recovery of 53.3%. Separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and SSF preceded by presaccharification of Camelina meal hydrolysate produced 5 ± 0.7, 16 ± 1.9, and 13 ± 2.6 mg/L of carotenoids, respectively. Importantly, the presence of water-insoluble solids, which normally inhibit microbial growth, correlated with a higher titer of carotenoids, suggesting that the latter could act as scavengers. CONCLUSIONS: This study paves the way for the exploitation of Camelina meal as feedstock in biorefinery processes. The process under development provides an example of how different final products can be obtained from this side stream, such as pure carotenoids and carotenoid-enriched Camelina meal, can potentially increase the initial value of the source material. The obtained data will help assess the feasibility of using Camelina meal to generate high value-added products.

18.
Metab Eng ; 46: 43-50, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29477856

RESUMEN

The yeast Saccharomyces cerevisiae is widely used as a cell factory for the biotechnological production of various industrial products. During these processes, yeasts meet different kinds of stressors that often cause oxidative stress and thus impair cell growth. Therefore, the development of robust strains is indispensable to improve production, yield and productivity of fermentative processes. Copper plays a key role in the response to oxidative stress, as cofactor of the cytosolic superoxide dismutase (Sod1) and being contained in metallochaperone and metallothioneines with antioxidant properties. In this work, we observed a higher naturally copper internalization in a robust S. cerevisiae strain engineered to produce the antioxidant l-ascorbic acid (L-AA), compared with the wild type strain. Therefore, we investigated the effect of the alteration of copper homeostasis on cellular stress tolerance. CTR1 and FRE1 genes, codifying for a plasma membrane high-affinity copper transporter and for a cell-surface ferric/cupric reductase, respectively, were overexpressed in both wild type and L-AA cells. Remarkably, we found that the sole FRE1 overexpression was sufficient to increase copper internalization leading to an enhanced stress tolerance toward H2O2 exposure, in both strains under investigation. These findings reveal copper homeostasis as a target for the development of robust cell factories.


Asunto(s)
Cobre/metabolismo , Homeostasis , Estrés Oxidativo , Saccharomyces cerevisiae , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Transportador de Cobre 1 , FMN Reductasa/genética , FMN Reductasa/metabolismo , Peróxido de Hidrógeno , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
19.
Appl Environ Microbiol ; 84(5)2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29269498

RESUMEN

Lactic acid has a wide range of applications starting from its undissociated form, and its production using cell factories requires stress-tolerant microbial hosts. The interspecies hybrid yeast Zygosaccharomyces parabailii has great potential to be exploited as a novel host for lactic acid production, due to high organic acid tolerance at low pH and a fermentative metabolism with a high growth rate. Here we used mRNA sequencing (RNA-seq) to analyze Z. parabailii's transcriptional response to lactic acid added exogenously, and we explore the biological mechanisms involved in tolerance. Z. parabailii contains two homeologous copies of most genes. Under lactic acid stress, the two genes in each homeolog pair tend to diverge in expression to a significantly greater extent than under control conditions, indicating that stress tolerance is facilitated by interactions between the two gene sets in the hybrid. Lactic acid induces downregulation of genes related to cell wall and plasma membrane functions, possibly altering the rate of diffusion of lactic acid into cells. Genes related to iron transport and redox processes were upregulated, suggesting an important role for respiratory functions and oxidative stress defense. We found differences in the expression profiles of genes putatively regulated by Haa1 and Aft1/Aft2, previously described as lactic acid responsive in Saccharomyces cerevisiae Furthermore, formate dehydrogenase (FDH) genes form a lactic acid-responsive gene family that has been specifically amplified in Z. parabailii in comparison to other closely related species. Our study provides a useful starting point for the engineering of Z. parabailii as a host for lactic acid production.IMPORTANCE Hybrid yeasts are important in biotechnology because of their tolerance to harsh industrial conditions. The molecular mechanisms of tolerance can be studied by analyzing differential gene expression under conditions of interest and relating gene expression patterns to protein functions. However, hybrid organisms present a challenge to the standard use of mRNA sequencing (RNA-seq) to study transcriptional responses to stress, because their genomes contain two similar copies of almost every gene. Here we used stringent mapping methods and a high-quality genome sequence to study the transcriptional response to lactic acid stress in Zygosaccharomyces parabailii ATCC 60483, a natural interspecies hybrid yeast that contains two complete subgenomes that are approximately 7% divergent in sequence. Beyond the insights we gained into lactic acid tolerance in this study, the methods we developed will be broadly applicable to other yeast hybrid strains.


Asunto(s)
Ácido Láctico/metabolismo , Transcripción Genética/fisiología , Zygosaccharomyces/fisiología , ARN de Hongos/análisis , ARN Mensajero/análisis , Análisis de Secuencia de ARN , Estrés Fisiológico , Zygosaccharomyces/genética
20.
FEMS Yeast Res ; 17(6)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28830085

RESUMEN

The yeast Saccharomyces cerevisiae is a well-established workhorse, either for recombinant or natural products, thanks to its natural traits and easily editable metabolism. However, during a bio-based industrial process it meets multiple stresses generated by operative conditions such as non-optimal temperature, pH, oxygenation and product accumulation. The development of tolerant strains is therefore indispensable for the improvement of production, yield and productivity of fermentative processes. In this regard, plants as resilient organisms are a generous source for fishing genes and/or metabolites that can help the cell factory to counteract environmental constraints. Plants possess proteins named temperature-induced lipocalins, TIL, whose levels in the cells correlates with the tolerance to sudden temperature changes and with the scavenging of reactive oxygen species. In this work, the gene encoding for the Arabidopsis thaliana TIL protein was for the first time expressed in S. cerevisiae. The recombinant strain was compared and analysed against the parental counterpart under heat shock, freezing, exposure to organic acid and oxidative agents. In all the tested conditions, TIL expression conferred a higher tolerance to the stress imposed, making this strain a promising candidate for the development of robust cell factories able to overtake the major impairments of industrial processes.


Asunto(s)
Lipocalinas/metabolismo , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/efectos de la radiación , Estrés Fisiológico , Temperatura , Proteínas de Arabidopsis/genética , Ácidos Carboxílicos/toxicidad , Expresión Génica , Microbiología Industrial/métodos , Lipocalinas/genética , Oxidantes/toxicidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...