Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(7): 902-913, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37264140

RESUMEN

Folding of nascent transcripts can be modulated by the RNA polymerase (RNAP) that carries out their transcription, and vice versa. A pause of RNAP during transcription of a preQ1 riboswitch (termed que-PEC) is stabilized by a previously characterized template consensus sequence and the ligand-free conformation of the nascent RNA. Ligand binding to the riboswitch induces RNAP pause release and downstream transcription termination; however, the mechanism by which riboswitch folding modulates pausing is unclear. Here, we report single-particle cryo-electron microscopy reconstructions of que-PEC in ligand-free and ligand-bound states. In the absence of preQ1, the RNA transcript is in an unexpected hyper-translocated state, preventing downstream nucleotide incorporation. Strikingly, on ligand binding, the riboswitch rotates around its helical axis, expanding the surrounding RNAP exit channel and repositioning the transcript for elongation. Our study reveals the tight coupling by which nascent RNA structures and their ligands can functionally regulate the macromolecular transcription machinery.


Asunto(s)
Proteínas de Escherichia coli , Riboswitch , ARN Bacteriano/química , Ligandos , Microscopía por Crioelectrón , Proteínas de Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , Pliegue del ARN , Bacterias/metabolismo , Conformación de Ácido Nucleico
2.
Biophys J ; 122(11): 2041-2052, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36352786

RESUMEN

AlphaFold2 (AF2) has revolutionized the field of protein structural prediction. Here, we test its ability to predict the tertiary and quaternary structure of a previously undescribed scaffold with new folds and unusual architecture, the monotopic membrane protein caveolin-1 (CAV1). CAV1 assembles into a disc-shaped oligomer composed of 11 symmetrically arranged protomers, each assuming an identical new fold, and contains the largest parallel ß-barrel known to exist in nature. Remarkably, AF2 predicts both the fold of the protomers and the interfaces between them. It also assembles between seven and 15 copies of CAV1 into disc-shaped complexes. However, the predicted multimers are energetically strained, especially the parallel ß-barrel. These findings highlight the ability of AF2 to correctly predict new protein folds and oligomeric assemblies at a granular level while missing some elements of higher-order complexes, thus positing a new direction for the continued development of deep-learning protein structure prediction approaches.


Asunto(s)
Furilfuramida , Proteínas de la Membrana , Proteínas de la Membrana/química , Estructura Terciaria de Proteína , Subunidades de Proteína , Conformación Proteica
3.
Sci Adv ; 8(19): eabn7232, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35544577

RESUMEN

Membrane-sculpting proteins shape the morphology of cell membranes and facilitate remodeling in response to physiological and environmental cues. Complexes of the monotopic membrane protein caveolin function as essential curvature-generating components of caveolae, flask-shaped invaginations that sense and respond to plasma membrane tension. However, the structural basis for caveolin's membrane remodeling activity is currently unknown. Here, we show that, using cryo-electron microscopy, the human caveolin-1 complex is composed of 11 protomers organized into a tightly packed disc with a flat membrane-embedded surface. The structural insights suggest a previously unrecognized mechanism for how membrane-sculpting proteins interact with membranes and reveal how key regions of caveolin-1, including its scaffolding, oligomerization, and intramembrane domains, contribute to its function.

4.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268374

RESUMEN

Highly stable oligomeric complexes of the monotopic membrane protein caveolin serve as fundamental building blocks of caveolae. Current evidence suggests these complexes are disc shaped, but the details of their structural organization and how they assemble are poorly understood. Here, we address these questions using single particle electron microscopy of negatively stained recombinant 8S complexes of human caveolin 1. We show that 8S complexes are toroidal structures ~15 nm in diameter that consist of an outer ring, an inner ring, and central protruding stalk. Moreover, we map the position of the N and C termini and determine their role in complex assembly, and visualize the 8S complexes in heterologous caveolae. Our findings provide critical insights into the structural features of 8S complexes and allow us to propose a model for how these highly stable membrane-embedded complexes are generated.

5.
Nat Commun ; 8: 14722, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300075

RESUMEN

The recent Zika virus (ZIKV) epidemic has been linked to unusual and severe clinical manifestations including microcephaly in fetuses of infected pregnant women and Guillian-Barré syndrome in adults. Neutralizing antibodies present a possible therapeutic approach to prevent and control ZIKV infection. Here we present a 6.2 Å resolution three-dimensional cryo-electron microscopy (cryoEM) structure of an infectious ZIKV (strain H/PF/2013, French Polynesia) in complex with the Fab fragment of a highly therapeutic and neutralizing human monoclonal antibody, ZIKV-117. The antibody had been shown to prevent fetal infection and demise in mice. The structure shows that ZIKV-117 Fabs cross-link the monomers within the surface E glycoprotein dimers as well as between neighbouring dimers, thus preventing the reorganization of E protein monomers into fusogenic trimers in the acidic environment of endosomes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Proteínas Estructurales Virales/inmunología , Infección por el Virus Zika/inmunología , Virus Zika/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Sitios de Unión , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Proteínas Estructurales Virales/química , Virus Zika/fisiología , Virus Zika/ultraestructura , Infección por el Virus Zika/virología
6.
J Mol Biol ; 418(1-2): 103-16, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22366544

RESUMEN

Actin is a ubiquitous eukaryotic protein that is responsible for cellular scaffolding, motility, and division. The ability of actin to form a helical filament is the driving force behind these cellular activities. Formation of a filament depends on the successful exchange of actin's ADP for ATP. Mammalian profilin is a small actin binding protein that catalyzes the exchange of nucleotide and facilitates the addition of an actin monomer to a growing filament. Here, crystal structures of profilin-actin have been determined to show an actively exchanging ATP. Structural analysis shows how the binding of profilin to the barbed end of actin causes a rotation of the small domain relative to the large domain. This conformational change is propagated to the ATP site and causes a shift in nucleotide loops, which in turn causes a repositioning of Ca(2+) to its canonical position as the cleft closes around ATP. Reversal of the solvent exposure of Trp356 is also involved in cleft closure. In addition, secondary calcium binding sites were identified.


Asunto(s)
Actinas/química , Adenosina Trifosfato/química , Profilinas/química , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Calcio/química , Calcio/metabolismo , Bovinos , Profilinas/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...