Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nat Commun ; 15(1): 2758, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553439

RESUMEN

Hospital surfaces can harbour bacterial pathogens, which may disseminate and cause nosocomial infections, contributing towards mortality in low- and middle-income countries (LMICs). During the BARNARDS study, hospital surfaces from neonatal wards were sampled to assess the degree of environmental surface and patient care equipment colonisation by Gram-negative bacteria (GNB) carrying antibiotic resistance genes (ARGs). Here, we perform PCR screening for extended-spectrum ß-lactamases (blaCTX-M-15) and carbapenemases (blaNDM, blaOXA-48-like and blaKPC), MALDI-TOF MS identification of GNB carrying ARGs, and further analysis by whole genome sequencing of bacterial isolates. We determine presence of consistently dominant clones and their relatedness to strains causing neonatal sepsis. Higher prevalence of carbapenemases is observed in Pakistan, Bangladesh, and Ethiopia, compared to other countries, and are mostly found in surfaces near the sink drain. Klebsiella pneumoniae, Enterobacter hormaechei, Acinetobacter baumannii, Serratia marcescens and Leclercia adecarboxylata are dominant; ST15 K. pneumoniae is identified from the same ward on multiple occasions suggesting clonal persistence within the same environment, and is found to be identical to isolates causing neonatal sepsis in Pakistan over similar time periods. Our data suggests persistence of dominant clones across multiple time points, highlighting the need for assessment of Infection Prevention and Control guidelines.


Asunto(s)
Países en Desarrollo , Sepsis Neonatal , Recién Nacido , Humanos , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Hospitales , Antibacterianos/farmacología , Klebsiella pneumoniae/genética , Bacterias Gramnegativas/genética , Pruebas de Sensibilidad Microbiana
3.
Antibiotics (Basel) ; 12(3)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36978411

RESUMEN

Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of neonatal sepsis and increasingly found as an invasive pathogen in older patient populations. Beta-lactam antibiotics remain the most effective therapeutic with resistance rarely reported, while the majority of GBS isolates carry the tetracycline resistance gene tet(M) in fixed genomic positions amongst five predominant clonal clades. In the UK, GBS resistance to clindamycin and erythromycin has increased from 3% in 1991 to 11.9% (clindamycin) and 20.2% (erythromycin), as reported in this study. Here, a systematic investigation of antimicrobial resistance genomic content sought to fully characterise the associated mobile genetic elements within phenotypically resistant GBS isolates from 193 invasive and non-invasive infections of UK adult patients collected during 2014 and 2015. Resistance to erythromycin and clindamycin was mediated by erm(A) (16/193, 8.2%), erm(B) (16/193, 8.2%), mef(A)/msr(D) (10/193, 5.1%), lsa(C) (3/193, 1.5%), lnu(C) (1/193, 0.5%), and erm(T) (1/193, 0.5%) genes. The integrative conjugative elements (ICEs) carrying these genes were occasionally found in combination with high gentamicin resistance mediating genes aac(6')-aph(2″), aminoglycoside resistance genes (ant(6-Ia), aph(3'-III), and/or aad(E)), alternative tetracycline resistance genes (tet(O) and tet(S)), and/or chloramphenicol resistance gene cat(Q), mediating resistance to multiple classes of antibiotics. This study provides evidence of the retention of previously reported ICESag37 (n = 4), ICESag236 (n = 2), and ICESpy009 (n = 3), as well as the definition of sixteen novel ICEs and three novel transposons within the GBS lineage, with no evidence of horizontal transfer.

4.
Clin Infect Dis ; 76(1): 119-133, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-35412593

RESUMEN

SUMMARY: 10.6% patients were CRE positive. Only 27% patients were prescribed at least 1 antibiotic to which infecting pathogen was susceptible. Burn and ICU admission and antibiotics exposures facilitate CRE acquisition. Escherichia coli ST167 was the dominant CRE clone. BACKGROUND: Given the high prevalence of multidrug resistance (MDR) across South Asian (SA) hospitals, we documented the epidemiology of carbapenem-resistant Enterobacterales (CRE) infections at Dhaka Medical College Hospital between October 2016 and September 2017. METHODS: We enrolled patients and collected epidemiology and outcome data. All Enterobacterales were characterized phenotypically and by whole-genome sequencing. Risk assessment for the patients with CRE was performed compared with patients with carbapenem-susceptible Enterobacterales (CSE). RESULTS: 10.6% of all 1831 patients with a clinical specimen collected had CRE. In-hospital 30-day mortality was significantly higher with CRE [50/180 (27.8%)] than CSE [42/312 (13.5%)] (P = .001); however, for bloodstream infections, this was nonsignificant. Of 643 Enterobacterales isolated, 210 were CRE; blaNDM was present in 180 isolates, blaOXA-232 in 26, blaOXA-181 in 24, and blaKPC-2 in 5. Despite this, ceftriaxone was the most commonly prescribed empirical antibiotic and only 27% of patients were prescribed at least 1 antibiotic to which their infecting pathogen was susceptible. Significant risk factors for CRE isolation included burns unit and intensive care unit admission, and prior exposure to levofloxacin, amikacin, clindamycin, and meropenem. Escherichia coli ST167 was the dominant CRE clone. Clustering suggested clonal transmission of Klebsiella pneumoniae ST15 and the MDR hypervirulent clone, ST23. The major trajectories involved in horizontal gene transfer were IncFII and IncX3, IS26, and Tn3. CONCLUSIONS: This is the largest study from an SA public hospital combining outcome, microbiology, and genomics. The findings indicate the urgent implementation of targeted diagnostics, appropriate antibiotic use, and infection-control interventions in SA public institutions.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Infecciones por Enterobacteriaceae , Humanos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Sur de Asia , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , beta-Lactamasas/genética , Pruebas de Sensibilidad Microbiana , Bangladesh , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Escherichia coli/genética , Klebsiella pneumoniae/genética , Genómica
5.
BMC Infect Dis ; 22(1): 593, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35790903

RESUMEN

BACKGROUND: In low- and middle-income countries (LMIC) Staphylococcus aureus is regarded as one of the leading bacterial causes of neonatal sepsis, however there is limited knowledge on the species diversity and antimicrobial resistance caused by Gram-positive bacteria (GPB). METHODS: We characterised GPB isolates from neonatal blood cultures from LMICs in Africa (Ethiopia, Nigeria, Rwanda, and South Africa) and South-Asia (Bangladesh and Pakistan) between 2015-2017. We determined minimum inhibitory concentrations and performed whole genome sequencing (WGS) on Staphylococci isolates recovered and clinical data collected related to the onset of sepsis and the outcome of the neonate up to 60 days of age. RESULTS: From the isolates recovered from blood cultures, Staphylococci species were most frequently identified. Out of 100 S. aureus isolates sequenced, 18 different sequence types (ST) were found which unveiled two small epidemiological clusters caused by methicillin resistant S. aureus (MRSA) in Pakistan (ST8) and South Africa (ST5), both with high mortality (n = 6/17). One-third of S. aureus was MRSA, with methicillin resistance also detected in Staphylococcus epidermidis, Staphylococcus haemolyticus and Mammaliicoccus sciuri. Through additional WGS analysis we report a cluster of M. sciuri in Pakistan identified between July-November 2017. CONCLUSIONS: In total we identified 14 different GPB bacterial species, however Staphylococci was dominant. These findings highlight the need of a prospective genomic epidemiology study to comprehensively assess the true burden of GPB neonatal sepsis focusing specifically on mechanisms of resistance and virulence across species and in relation to neonatal outcome.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Sepsis Neonatal , Cultivo de Sangre , Países en Desarrollo , Etiopía , Humanos , Recién Nacido , Sepsis Neonatal/epidemiología , Estudios Prospectivos , Staphylococcus aureus/genética
6.
Sci Total Environ ; 839: 156074, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623509

RESUMEN

Bacteriophages (phages) are viruses considered to be natural bacterial predators and widely detected in aquatic environments. Sewage samples are an important source of phage isolation since high density and diversity of bacterial cells are present, due to human, animal and household fluids. This study aims to investigate and characterise phages against an extremely drug-resistant (XDR) lineage, Klebsiella pneumoniae ST16, using sewage samples from different parts of the World. Sewage samples from Brazil, Bangladesh, Saudi Arabia, Thailand and the United Kingdom were collected and used to investigate phages against ten K. pneumoniae ST16 (hosts) recovered from infection sites. The phages were microbiological and genetically characterised by double-agar overlay (DLA), transmission electron microscopy and Illumina WGS. The host range against K. pneumoniae belonging to different sequence types was evaluated at different temperatures by spot test. Further phage characterisation, such as efficiency of plating, optimal phage temperature, and pH/temperature susceptibility, were conducted. Fourteen lytic phages were isolated, belonging to Autographiviridae, Ackermannviridae, Demerecviridae, Drexlerviridae, and Myoviridae families, from Brazil, Bangladesh, Saudi Arabia and Thailand and demonstrated a great genetic diversity. The viruses had good activity against our collection of clinical K. pneumoniae ST16 at room temperature and 37 °C, but also against other important Klebsiella clones such as ST11, ST15, and ST258. Temperature assays showed lytic activity in different temperatures, except for PWKp18 which only had activity at room temperature. Phages were stable between pH 5 and 10 with minor changes in phage activity, and 70 °C was the temperature able to kill all phages in this study. Using sewage from different parts of the World allowed us to have a set of highly efficient phages against an K. pneumoniae ST16 that can be used in the future to develop new tools to combat infections in humans or animals caused by this pathogen.


Asunto(s)
Bacteriófagos , Klebsiella pneumoniae , Animales , Bacteriófagos/genética , Especificidad del Huésped , Klebsiella , Aguas del Alcantarillado
7.
Lancet Glob Health ; 10(5): e661-e672, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35427523

RESUMEN

BACKGROUND: Neonatal sepsis is a primary cause of neonatal mortality and is an urgent global health concern, especially within low-income and middle-income countries (LMICs), where 99% of global neonatal mortality occurs. The aims of this study were to determine the incidence and associations with neonatal sepsis and all-cause mortality in facility-born neonates in LMICs. METHODS: The Burden of Antibiotic Resistance in Neonates from Developing Societies (BARNARDS) study recruited mothers and their neonates into a prospective observational cohort study across 12 clinical sites from Bangladesh, Ethiopia, India, Pakistan, Nigeria, Rwanda, and South Africa. Data for sepsis-associated factors in the four domains of health care, maternal, birth and neonatal, and living environment were collected for all mothers and neonates enrolled. Primary outcomes were clinically suspected sepsis, laboratory-confirmed sepsis, and all-cause mortality in neonates during the first 60 days of life. Incidence proportion of livebirths for clinically suspected sepsis and laboratory-confirmed sepsis and incidence rate per 1000 neonate-days for all-cause mortality were calculated. Modified Poisson regression was used to investigate factors associated with neonatal sepsis and parametric survival models for factors associated with all-cause mortality. FINDINGS: Between Nov 12, 2015 and Feb 1, 2018, 29 483 mothers and 30 557 neonates were enrolled. The incidence of clinically suspected sepsis was 166·0 (95% CI 97·69-234·24) per 1000 livebirths, laboratory-confirmed sepsis was 46·9 (19·04-74·79) per 1000 livebirths, and all-cause mortality was 0·83 (0·37-2·00) per 1000 neonate-days. Maternal hypertension, previous maternal hospitalisation within 12 months, average or higher monthly household income, ward size (>11 beds), ward type (neonatal), living in a rural environment, preterm birth, perinatal asphyxia, and multiple births were associated with an increased risk of clinically suspected sepsis, laboratory-confirmed sepsis, and all-cause mortality. The majority (881 [72·5%] of 1215) of laboratory-confirmed sepsis cases occurred within the first 3 days of life. INTERPRETATION: Findings from this study highlight the substantial proportion of neonates who develop neonatal sepsis, and the high mortality rates among neonates with sepsis in LMICs. More efficient and effective identification of neonatal sepsis is needed to target interventions to reduce its incidence and subsequent mortality in LMICs. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Sepsis Neonatal , Nacimiento Prematuro , Sepsis , Países en Desarrollo , Femenino , Humanos , Mortalidad Infantil , Recién Nacido , Sepsis Neonatal/epidemiología , Embarazo , Estudios Prospectivos , Sepsis/epidemiología
8.
Front Microbiol ; 13: 796465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308384

RESUMEN

Long-read sequencing (LRS) can resolve repetitive regions, a limitation of short read (SR) data. Reduced cost and instrument size has led to a steady increase in LRS across diagnostics and research. Here, we re-basecalled FAST5 data sequenced between 2018 and 2021 and analyzed the data in relation to gDNA across a large dataset (n = 200) spanning a wide GC content (25-67%). We examined whether re-basecalled data would improve the hybrid assembly, and, for a smaller cohort, compared long read (LR) assemblies in the context of antimicrobial resistance (AMR) genes and mobile genetic elements. We included a cost analysis when comparing SR and LR instruments. We compared the R9 and R10 chemistries and reported not only a larger yield but increased read quality with R9 flow cells. There were often discrepancies with ARG presence/absence and/or variant detection in LR assemblies. Flye-based assemblies were generally efficient at detecting the presence of ARG on both the chromosome and plasmids. Raven performed more quickly but inconsistently recovered small plasmids, notably a ∼15-kb Col-like plasmid harboring bla KPC . Canu assemblies were the most fragmented, with genome sizes larger than expected. LR assemblies failed to consistently determine multiple copies of the same ARG as identified by the Unicycler reference. Even with improvements to ONT chemistry and basecalling, long-read assemblies can lead to misinterpretation of data. If LR data are currently being relied upon, it is necessary to perform multiple assemblies, although this is resource (computing) intensive and not yet readily available/useable.

9.
Antimicrob Resist Infect Control ; 11(1): 49, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296353

RESUMEN

BACKGROUND: The burden of antibiotic resistant infection is mainly felt in low-to-middle income countries, where the rate of antimicrobial resistance is largely under-surveyed and under huge pressure from unregulated, disparate and often self-guided access to antimicrobials. Nosocomial infections from hospital environments have been shown to be a particularly prevalent source of multi-drug resistant strains, yet surveillance of hospital environmental contamination is often not investigated. METHODS: The study was prospective, observational and cross-sectional, sampling 231 high and low touch surfaces from 15th March to 13th April 2021, from five wards in the Cape Coast Teaching Hospital, Ghana. Microbial growth in the presence of vancomycin and either meropenem or cefotaxime was examined and bacterial species were identified by MALDI-TOF. The presence of common extended-spectrum ß-lactamases (ESBL) and carbapenemase antimicrobial resistance genes (ARG) were identified through PCR screening, which were confirmed by phenotypic antimicrobial susceptibility determination. Isolates positive for carbapenem resistance genes were sequenced using a multi-platform approach. RESULTS: We recovered microbial growth from 99% of swabs (n = 229/231) plated on agar in the absence of antimicrobials. Multiple sites were found to be colonised with resistant bacteria throughout the hospital setting. Bacteria with multi-drug resistance and ARG of concern were isolated from high and low touch points with evidence of strain dissemination throughout the environment. A total of 21 differing species of bacteria carrying ARG were isolated. The high prevalence of Acinetobacter baumannii carrying blaNDM-1 observed was further characterised by whole genome sequencing and phylogenetic analysis to determine the relationship between resistant strains found in different wards. CONCLUSION: Evidence of multiple clonal incursions of MDR bacteria of high sepsis risk were found in two separate wards for a regional hospital in Ghana. The prevalence of multiple blaNDM carrying species in combination with combinations of ESBLs was particularly concerning and unexpected in Africa. We also identify strains carrying tet(X3), blaVIM-5 or blaDIM-1 showing a high diversity of carbapenamases present as a reservoir in a hospital setting. Findings of multi-drug resistant bacteria from multiple environmental sites throughout the hospital will inform future IPC practices and aid research prioritisation for AMR in Ghana.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas , Estudios Transversales , Monitoreo del Ambiente , Ghana/epidemiología , Bacterias Gramnegativas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Filogenia , Estudios Prospectivos , Centros de Atención Terciaria , beta-Lactamasas
10.
Infect Drug Resist ; 15: 933-946, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299860

RESUMEN

Neonatal sepsis is defined as a systemic infection within the first 28 days of life, with early-onset sepsis (EOS) occurring within the first 72h, although the definition of EOS varies in literature. Whilst the global incidence has dramatically reduced over the last decade, neonatal sepsis remains an important cause of neonatal mortality, highest in low- and middle-income countries (LMICs). Symptoms at the onset of neonatal sepsis can be subtle, and therefore EOS is often difficult to diagnose from clinical presentation and laboratory testing and blood cultures are not always conclusive or accessible, especially in resource limited countries. Although the World Health Organisation (WHO) currently advocates a ß-lactam, and gentamicin for first line treatment, availability and cost influence the empirical antibiotic therapy administered. Antibiotic treatment of neonatal sepsis in LMICs is highly variable, partially caused by factors such as cost of antibiotics (and who pays for them) and access to certain antibiotics. Antimicrobial resistance (AMR) has increased considerably over the past decade and this review discusses current microbiology data available in the context of the diagnosis, and treatment for EOS. Importantly, this review highlights a large variability in data availability, methodology, availability of diagnostics, and aetiology of sepsis pathogens.

11.
Emerg Microbes Infect ; 11(1): 1015-1023, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35259067

RESUMEN

Bacteriophages are the most abundant organisms on Earth. As there are few effective treatment options against some pathogens, the interest in the bacteriophage control of multi-drug-resistant bacterial pathogens is escalating, especially for Klebsiella pneumoniae. This study aimed to develop a phage-based solution to the rising incidence of extensively drug-resistant clinical Klebsiella pneumoniae sequence type (ST16) infections starting from a set of phages recently characterized against this lineage. A phage-cocktail (Katrice-16) composed of eight lytic phages was characterized for potential use in humans. In vitro and in vivo broth inhibition and Galleria mellonella rescue assays were used to demonstrate the efficacy of this approach using a collection of 56 strains of K. pneumoniae ST16, with distinct genetic backgrounds that were collected from clinical infections from four disparate nations. Additionally, Katrice-16 anti-biofilm activity, synergism with meropenem, and activity in human body fluids were also assessed. Katrice-16 was highly active in vitro against our K. pneumoniae ST16 collection (AUC% median = 86.48%; Q1 = 83.8%; Q2 = 96.85%; Q3 = 98.85%). It additionally demonstrated excellent in vivo activity in G. mellonella rescue assays, even with larvae infected by isolates that exhibited moderate in vitro inhibition. We measured significant anti-biofilm activity over 12 h (p = .0113) and synergic activity with meropenem. In addition, we also demonstrate that Katrice-16 maintained high activity in human body fluids. Our results indicate that our cocktail will likely be an effective solution for human infections with this increasingly prevalent and often highly resistant bacterial clone.


Asunto(s)
Bacteriófagos , Klebsiella pneumoniae , Antibacterianos/farmacología , Bacteriófagos/genética , Humanos , Incidencia , Klebsiella pneumoniae/genética , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana
12.
Antibiotics (Basel) ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34827308

RESUMEN

Lefamulin is the first of the pleuromutilin class of antimicrobials to be available for therapeutic use in humans. Minimum inhibitory concentrations of lefamulin were determined by microbroth dilution for 90 characterised clinical isolates (25 Ureaplasma parvum, 25 Ureaplasma urealyticum, and 40 Mycoplasma hominis). All Mycoplasma hominis isolates possessed lefamulin MICs of ≤0.25 mg/L after 48 h (MIC50/90 of 0.06/0.12 mg/L), despite an inherent resistance to macrolides; while Ureaplasma isolates had MICs of ≤2 mg/L after 24 h (MIC50/90 of 0.25/1 mg/L), despite inherent resistance to clindamycin. Two U. urealyticum isolates with additional A2058G mutations of 23S rRNA, and one U. parvum isolate with a R66Q67 deletion (all of which had a combined resistance to macrolides and clindamycin) only showed a 2-fold increase in lefamulin MIC (1-2 mg/L) relative to macrolide-susceptible strains. Lefamulin could be an effective alternative antimicrobial for treating Ureaplasma spp. and Mycoplasma hominis infections irrespective of intrinsic or acquired resistance to macrolides, lincosamides, and ketolides. Based on this potent in vitro activity and the known good, rapid, and homogenous tissue penetration of female and male urogenital tissues and glands, further exploration of clinical efficacy of lefamulin for the treatment of Mycoplasma and Ureaplasma urogenital infections is warranted.

13.
Antibiotics (Basel) ; 10(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34827317

RESUMEN

Often dismissed as a commensal, Mycoplasma hominis is an increasingly prominent target of research due to its role in septic arthritis and organ transplant failure in immunosuppressed patients, particularly lung transplantation. As a mollicute, its highly reductive genome and structure render it refractile to most forms of treatment and growing levels of resistance to the few sources of treatment left, such as fluoroquinolones. We examined antimicrobial susceptibility (AST) to fluoroquinolones on 72 isolates and observed resistance in three (4.1%), with corresponding mutations in the quinolone resistance-determining region (QRDR) of S83L or E87G in gyrA and S81I or E85V in parC. However, there were high levels of polymorphism identified between all isolates outside of the QRDR, indicating caution for a genomics-led approach for resistance screening, particularly as we observed a further two quinolone-susceptible isolates solely containing gyrA mutation S83L. However, both isolates spontaneously developed a second spontaneous E85K parC mutation and resistance following prolonged incubation in 4 mg/L levofloxacin for an extra 24-48 h. Continued AST surveillance and investigation is required to understand how gyrA QRDR mutations predispose M. hominis to rapid spontaneous mutation and fluoroquinolone resistance, absent from other susceptible isolates. The unusually high prevalence of polymorphisms in M. hominis also warrants increased genomics' surveillance.

14.
Nat Microbiol ; 6(10): 1259-1270, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34580444

RESUMEN

Understanding how multidrug-resistant Enterobacterales (MDRE) are transmitted in low- and middle-income countries (LMICs) is critical for implementing robust policies to curb the increasing burden of antimicrobial resistance (AMR). Here, we analysed samples from surgical site infections (SSIs), hospital surfaces (HSs) and arthropods (summer and winter 2016) to investigate the incidence and transmission of MDRE in a public hospital in Pakistan. We investigated Enterobacterales containing resistance genes (blaCTX-M-15, blaNDM and blaOXA-48-like) for identification, antimicrobial susceptibility testing and whole-genome sequencing. Genotypes, phylogenetic relationships and transmission events for isolates from different sources were investigated using single-nucleotide polymorphism (SNP) analysis with a cut-off of ≤20 SNPs. Escherichia coli (14.3%), Klebsiella pneumoniae (10.9%) and Enterobacter cloacae (16.3%) were the main MDRE species isolated. The carbapenemase gene blaNDM was most commonly detected, with 15.5%, 15.1% and 13.3% of samples positive in SSIs, HSs and arthropods, respectively. SNP (≤20) and spatiotemporal analysis revealed linkages in bacteria between SSIs, HSs and arthropods supporting the One Health approach to underpin infection control policies across LMICs and control AMR.


Asunto(s)
Vectores Artrópodos/microbiología , Farmacorresistencia Bacteriana Múltiple , Infecciones por Enterobacteriaceae/microbiología , Enterobacteriaceae/aislamiento & purificación , Infección de la Herida Quirúrgica/microbiología , Animales , Antibacterianos/farmacología , Vectores Artrópodos/clasificación , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Enterobacteriaceae/clasificación , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/transmisión , Microbiología Ambiental , Variación Genética , Hospitales , Humanos , Pruebas de Sensibilidad Microbiana , Pakistán/epidemiología , Filogenia , Plásmidos/genética , Prevalencia , Estaciones del Año , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/transmisión , beta-Lactamasas/genética
15.
J Antimicrob Chemother ; 76(12): 3175-3182, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34477840

RESUMEN

OBJECTIVES: To evaluate the accuracy, susceptibility and specificity of MYCOPLASMA IST3, the next generation of the most popular culture-based in vitro diagnostic device designed to detect, identify and test the susceptibility of urogenital mycoplasma infections. METHODS: MYCOPLASMA IST3 was evaluated against culture- and molecular-based gold standard methodologies to detect, identify, enumerate and determine antimicrobial resistance for Mycoplasma hominis and Ureaplasma species in 516 clinical samples collected across France, Serbia and the UK. Sample types included vulvovaginal/endocervical or urethral swabs (dry swab or eSwab®), semen and urine samples, which included blinded analysis following addition of a panel of 80 characterized control strains. RESULTS: Overall species identification was excellent for both Ureaplasma spp. (98.4% sensitivity, 99.7% specificity) and M. hominis (95.7% sensitivity, 100% specificity) relative to combined colony morphology on agar and quantitative PCR standards. Non-dilution-based bacterial load estimation by the assay was accurate between 83.7% (M. hominis) and 86.3% (Ureaplasma spp.) of the time (increased to 94.2% and 100%, respectively, if ±10-fold variance was allowed) relative to colonies counted on agar. Resistance accuracy for Ureaplasma spp. varied from gold standards for only 11/605 of individual tests (major error rate = 1.8%) and for 14/917 individual tests for M. hominis (major error rate = 1.5%). CONCLUSIONS: The redesigned MYCOPLASMA IST3 assay eliminated previous shortcomings by providing independent accurate resistance screening of M. hominis and Ureaplasma species, even in mixed infections, with CLSI-compliant thresholds. Specificity, sensitivity and enumeration estimates correlated closely with the confirmatory methods.


Asunto(s)
Infecciones por Mycoplasma , Mycoplasma , Infecciones por Ureaplasma , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycoplasma/diagnóstico , Mycoplasma hominis/genética , Ureaplasma , Infecciones por Ureaplasma/diagnóstico , Ureaplasma urealyticum/genética
16.
Lancet Infect Dis ; 21(12): 1677-1688, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384533

RESUMEN

BACKGROUND: Sepsis is a major contributor to neonatal mortality, particularly in low-income and middle-income countries (LMICs). WHO advocates ampicillin-gentamicin as first-line therapy for the management of neonatal sepsis. In the BARNARDS observational cohort study of neonatal sepsis and antimicrobial resistance in LMICs, common sepsis pathogens were characterised via whole genome sequencing (WGS) and antimicrobial resistance profiles. In this substudy of BARNARDS, we aimed to assess the use and efficacy of empirical antibiotic therapies commonly used in LMICs for neonatal sepsis. METHODS: In BARNARDS, consenting mother-neonates aged 0-60 days dyads were enrolled on delivery or neonatal presentation with suspected sepsis at 12 BARNARDS clinical sites in Bangladesh, Ethiopia, India, Pakistan, Nigeria, Rwanda, and South Africa. Stillborn babies were excluded from the study. Blood samples were collected from neonates presenting with clinical signs of sepsis, and WGS and minimum inhibitory concentrations for antibiotic treatment were determined for bacterial isolates from culture-confirmed sepsis. Neonatal outcome data were collected following enrolment until 60 days of life. Antibiotic usage and neonatal outcome data were assessed. Survival analyses were adjusted to take into account potential clinical confounding variables related to the birth and pathogen. Additionally, resistance profiles, pharmacokinetic-pharmacodynamic probability of target attainment, and frequency of resistance (ie, resistance defined by in-vitro growth of isolates when challenged by antibiotics) were assessed. Questionnaires on health structures and antibiotic costs evaluated accessibility and affordability. FINDINGS: Between Nov 12, 2015, and Feb 1, 2018, 36 285 neonates were enrolled into the main BARNARDS study, of whom 9874 had clinically diagnosed sepsis and 5749 had available antibiotic data. The four most commonly prescribed antibiotic combinations given to 4451 neonates (77·42%) of 5749 were ampicillin-gentamicin, ceftazidime-amikacin, piperacillin-tazobactam-amikacin, and amoxicillin clavulanate-amikacin. This dataset assessed 476 prescriptions for 442 neonates treated with one of these antibiotic combinations with WGS data (all BARNARDS countries were represented in this subset except India). Multiple pathogens were isolated, totalling 457 isolates. Reported mortality was lower for neonates treated with ceftazidime-amikacin than for neonates treated with ampicillin-gentamicin (hazard ratio [adjusted for clinical variables considered potential confounders to outcomes] 0·32, 95% CI 0·14-0·72; p=0·0060). Of 390 Gram-negative isolates, 379 (97·2%) were resistant to ampicillin and 274 (70·3%) were resistant to gentamicin. Susceptibility of Gram-negative isolates to at least one antibiotic in a treatment combination was noted in 111 (28·5%) to ampicillin-gentamicin; 286 (73·3%) to amoxicillin clavulanate-amikacin; 301 (77·2%) to ceftazidime-amikacin; and 312 (80·0%) to piperacillin-tazobactam-amikacin. A probability of target attainment of 80% or more was noted in 26 neonates (33·7% [SD 0·59]) of 78 with ampicillin-gentamicin; 15 (68·0% [3·84]) of 27 with amoxicillin clavulanate-amikacin; 93 (92·7% [0·24]) of 109 with ceftazidime-amikacin; and 70 (85·3% [0·47]) of 76 with piperacillin-tazobactam-amikacin. However, antibiotic and country effects could not be distinguished. Frequency of resistance was recorded most frequently with fosfomycin (in 78 isolates [68·4%] of 114), followed by colistin (55 isolates [57·3%] of 96), and gentamicin (62 isolates [53·0%] of 117). Sites in six of the seven countries (excluding South Africa) stated that the cost of antibiotics would influence treatment of neonatal sepsis. INTERPRETATION: Our data raise questions about the empirical use of combined ampicillin-gentamicin for neonatal sepsis in LMICs because of its high resistance and high rates of frequency of resistance and low probability of target attainment. Accessibility and affordability need to be considered when advocating antibiotic treatments with variance in economic health structures across LMICs. FUNDING: The Bill & Melinda Gates Foundation.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Sepsis Neonatal/tratamiento farmacológico , Sepsis Neonatal/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/economía , Estudios de Cohortes , Quimioterapia Combinada , Enterobacteriaceae/patogenicidad , Humanos , Recién Nacido , Staphylococcus aureus/patogenicidad , Virulencia
17.
Nat Microbiol ; 6(4): 512-523, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33782558

RESUMEN

Antimicrobial resistance in neonatal sepsis is rising, yet mechanisms of resistance that often spread between species via mobile genetic elements, ultimately limiting treatments in low- and middle-income countries (LMICs), are poorly characterized. The Burden of Antibiotic Resistance in Neonates from Developing Societies (BARNARDS) network was initiated to characterize the cause and burden of antimicrobial resistance in neonatal sepsis for seven LMICs in Africa and South Asia. A total of 36,285 neonates were enrolled in the BARNARDS study between November 2015 and December 2017, of whom 2,483 were diagnosed with culture-confirmed sepsis. Klebsiella pneumoniae (n = 258) was the main cause of neonatal sepsis, with Serratia marcescens (n = 151), Klebsiella michiganensis (n = 117), Escherichia coli (n = 75) and Enterobacter cloacae complex (n = 57) also detected. We present whole-genome sequencing, antimicrobial susceptibility and clinical data for 916 out of 1,038 neonatal sepsis isolates (97 isolates were not recovered from initial isolation at local sites). Enterobacterales (K. pneumoniae, E. coli and E. cloacae) harboured multiple cephalosporin and carbapenem resistance genes. All isolated pathogens were resistant to multiple antibiotic classes, including those used to treat neonatal sepsis. Intraspecies diversity of K. pneumoniae and E. coli indicated that multiple antibiotic-resistant lineages cause neonatal sepsis. Our results will underpin research towards better treatments for neonatal sepsis in LMICs.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/patogenicidad , Infecciones por Bacterias Gramnegativas/microbiología , Sepsis Neonatal/microbiología , África/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Asia/epidemiología , Proteínas Bacterianas/genética , Países en Desarrollo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Variación Genética , Genoma Bacteriano/genética , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/mortalidad , Humanos , Recién Nacido , Sepsis Neonatal/tratamiento farmacológico , Sepsis Neonatal/mortalidad , Filogenia , Plásmidos/genética , beta-Lactamasas/genética
18.
J Antimicrob Chemother ; 76(5): 1113-1116, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33608737

RESUMEN

Legionella pneumophila, a Gram-negative bacillus, is the causative agent of Legionnaire's disease, a form of severe community-acquired pneumonia. Infection can have high morbidity, with a high proportion of patients requiring ICU admission, and up to 10% mortality, which is exacerbated by the lack of efficacy of typical empirical antibiotic therapy against Legionella spp. The fastidious nature of the entire Legionellaceae family historically required inclusion of activated charcoal in the solid medium to remove growth inhibitors, which inherently interferes with accurate antimicrobial susceptibility determination, an acknowledged methodological shortfall, now rectified by a new solid medium that gives results comparable to those of microbroth dilution. Here, as an international Legionella community (with authors representing various international reference laboratories, countries and clinical stakeholders for diagnosis and treatment of legionellosis), we set out recommendations for the standardization of antimicrobial susceptibility testing methods, guidelines and reference strains to facilitate an improved era of antibiotic resistance determination.


Asunto(s)
Legionella pneumophila , Legionella , Enfermedad de los Legionarios , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Enfermedad de los Legionarios/diagnóstico , Enfermedad de los Legionarios/tratamiento farmacológico , Estándares de Referencia
19.
Artículo en Inglés | MEDLINE | ID: mdl-33468475

RESUMEN

A minimal genome and absent bacterial cell wall render Mycoplasma hominis inherently resistant to most antimicrobials except lincosamides, tetracyclines, and fluoroquinolones. Often dismissed as a commensal (except where linked to preterm birth), it causes septic arthritis in immunodeficient patients and is increasingly associated with transplant failure (particularly lung) accompanying immunosuppression. We examined antimicrobial susceptibility (AST) on strains archived from 2005 to 2015 submitted to the Public Health England reference laboratory and determined the underlying mechanism of resistance by whole-genome sequencing (WGS). Archived M. hominis strains included 32/115 from invasive infection (sepsis, cerebrospinal [CSF], peritoneal, and pleural fluid) over the 10-year period (6.4% of all samples submitted from 2010 to 2015 were positive). No clindamycin resistance was detected, while two strains were resistant to moxifloxacin and levofloxacin (resistance mutations S83L or E87G in gyrA and S81I or E84V in parC). One of these strains and 11 additional strains were tetracycline resistant, mediated by tet(M) carried within an integrative conjugative element (ICE) consistently integrated at the somatic rumA gene; however, the ICEs varied widely in 5 to 19 associated accessory genes. WGS analysis showed that tet(M)-carrying strains were not clonal, refuting previous speculation that the ICE was broken and immobile. We found tet(M)-positive and -negative strains (including the multiresistant 2015 strain) to be equally susceptible to tigecycline and josamycin; however, the British National Formulary does not include guidance for these. Continued M. hominis investigation and AST surveillance (especially immunocompromised patients) is warranted, and the limited number of therapeutics needs to be expanded in the United Kingdom.


Asunto(s)
Infecciones por Mycoplasma , Nacimiento Prematuro , Antibacterianos/farmacología , Inglaterra , Femenino , Humanos , Recién Nacido , Pruebas de Sensibilidad Microbiana , Infecciones por Mycoplasma/tratamiento farmacológico , Mycoplasma hominis/genética , Embarazo , Resistencia a la Tetraciclina/genética , Reino Unido
20.
J Antimicrob Chemother ; 76(5): 1197-1204, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33367732

RESUMEN

OBJECTIVES: There is a lack of international unification for AST methodology for Legionella pneumophila. Current literature contains multiple possible methods and this study compares each of them to determine methodological concordance. METHODS: Antibiotic susceptibility of 50 L. pneumophila strains was determined using broth microdilution (BMD), serial antimicrobial dilution in traditional buffered charcoal yeast extract (BCYE) agar (as well as comparison with gradient strip overlay on BCYE) and in a novel charcoal-free agar (LASARUS) for rifampicin, azithromycin, levofloxacin and doxycycline. RESULTS: The deviation of tested media relative to BMD highlighted the overall similarity of BMD and LASARUS across all antimicrobials tested (within one serial dilution). BCYE agar dilution showed an increased MIC of up to five serial dilutions relative to BMD, while MICs by gradient strip overlay on BCYE were elevated by two to three serial dilutions, with the exception of doxycycline, which was decreased by three serial dilutions relative to MIC values determined by BMD. The MIC range for azithromycin was wider than for other antimicrobials tested and found to be caused by the presence or absence of the lpeAB gene. CONCLUSIONS: BMD-based antimicrobial susceptibility testing (AST) methodology should be the internationally agreed gold standard for Legionella spp. AST, as is common for other bacterial species. Traditional BCYE gave significantly elevated MIC results and its use should be discontinued for Legionella spp., while MIC determination using LASARUS solid medium gave results concordant (within one serial dilution) with BMD for all antimicrobials tested. To the best of our knowledge, this study is the first to identify the lpeAB gene in UK isolates.


Asunto(s)
Antiinfecciosos , Legionella , Antibacterianos/farmacología , Carbón Orgánico , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...