Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aust Vet J ; 102(10): 517-523, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39054806

RESUMEN

Buruli ulcer is a chronic ulcerative disease of the skin and subcutaneous tissues caused by infection with Mycobacterium ulcerans. Although Australian possums are known to be susceptible to Buruli ulcer, many aspects of the disease in possums, including welfare impacts, remain largely unreported. Severe clinical Buruli ulcer was identified in four common ringtail possums (Pseudocheirus peregrinus) from Melbourne, Victoria. All four possums were euthanased due to the presence of deep ulcerative lesions on paws, with extensive tissue necrosis that exposed bones and tendons in three cases. Histologically, there was severe ulcerative necrotising pyogranulomatous dermatitis, panniculitis and myositis, with intralesional acid-fast bacteria. M. ulcerans was detected by real-time PCR in all swabs, tissues and faeces collected from all four cases. Buruli ulcer may be an important and under-recognised cause of poor possum welfare in endemic areas. The physical impacts of the severe cutaneous lesions, especially those extending to underlying bones and joints, would have directly impaired the mobility of these possums, affecting navigation of their natural environments and expression of natural behaviours including foraging and socialising. Systemic distribution of M. ulcerans throughout all major internal organs, as observed here, may further impact the health and fitness of infected possums. Faecal shedding of M. ulcerans in all four cases supports the role of possums as zoonotic reservoirs. Further research is needed to investigate the epidemiology, pathogenesis and welfare impacts of Buruli ulcer in possums and to inform the design of interventions that may protect their health and welfare.


Asunto(s)
Bienestar del Animal , Úlcera de Buruli , Mycobacterium ulcerans , Animales , Úlcera de Buruli/veterinaria , Úlcera de Buruli/microbiología , Victoria/epidemiología , Mycobacterium ulcerans/aislamiento & purificación , Masculino , Femenino , Heces/microbiología , Trichosurus/microbiología
2.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862476

RESUMEN

Hybrid CMOS (hCMOS) x-ray framing cameras are a new and powerful detector option for experiments in the fields of Inertial Confinement Fusion (ICF) and High Energy Density Physics (HEDP). These digital cameras capture multiple images along a single line-of-sight with a time resolution as short as 1.5 ns and with high quantum efficiency. To manage the high data rate, an image sequence is acquired in a short burst of time and subsequently read out on a much longer time scale. The technology is well suited for operating in high radiation environments, including fusion ignition experiments. Diagnostics using hCMOS cameras are now deployed in experiments on major laser and pulsed-power ICF facilities around the world. Continued advances in microelectronics technologies will enable faster and more capable detectors well into the future. This paper reviews this detector technology with a focus on application to ICF and HEDP experiments.

3.
Rev Sci Instrum ; 94(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37184347

RESUMEN

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

4.
Phys Rev Lett ; 125(15): 155002, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095639

RESUMEN

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×10^{13} (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

5.
Rev Sci Instrum ; 89(10): 10F102, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399823

RESUMEN

X-ray diffraction measurements to characterize phase transitions of dynamically compressed high-Z matter at Mbar pressures require both sufficient photon energy and fluence to create data with high fidelity in a single shot. Large-scale laser systems can be used to generate x-ray sources above 10 keV utilizing line radiation of mid-Z elements. However, the laser-to-x-ray energy conversion efficiency at these energies is low, and thermal x-rays or hot electrons result in unwanted background. We employ polycapillary x-ray lenses in powder x-ray diffraction measurements using solid target x-ray emission from either the Z-Beamlet long-pulse or the Z-Petawatt (ZPW) short-pulse laser systems at Sandia National Laboratories. Polycapillary lenses allow for a 100-fold fluence increase compared to a conventional pinhole aperture while simultaneously reducing the background significantly. This enables diffraction measurements up to 16 keV at the few-photon signal level as well as diffraction experiments with ZPW at full intensity.

6.
Rev Sci Instrum ; 89(10): 105106, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399920

RESUMEN

Amplification of the transverse scattered component of stimulated Brillouin scattering (SBS) can contribute to optical damage in the large aperture optics of multi-kJ lasers. Because increased laser bandwidth from optical phase modulation (PM) can suppress SBS, high energy laser amplifiers are injected with PM light. Phase modulation distributes the single-frequency spectrum of a master oscillator laser among individual PM sidebands, so a sufficiently high modulation index ß can maintain the fluence for all spectral components below the SBS threshold. To avoid injection of single frequency light in the event of a PM failure, a high-speed PM failsafe system (PMFS) must be employed. Because PM is easily converted to AM, essentially all PM failsafes detect AM, with the one described here employing a novel configuration where optical heterodyne detection converts PM to AM, followed by passive AM power detection. Although the PMFS is currently configured for continuous monitoring, it can also detect PM for pulse durations ≥2 ns and could be modified to accommodate shorter pulses. This PMFS was deployed on the Z-Beamlet Laser (ZBL) at Sandia National Laboratories, as required by an energy upgrade to support programs at Sandia's Z Facility such as magnetized liner inertial fusion. Depending on the origin of a PM failure, the PMFS responds in as little as 7 ns. In the event of an instantaneous failure during initiation of a laser shot, this response time translates to a 30-50 ns margin of safety by blocking a pulse from leaving ZBL's regenerative amplifier, which prevents injection of single frequency light into the main amplification chain. The performance of the PMFS, without the need for operator interaction, conforms to the principles of engineered safety.

7.
Rev Sci Instrum ; 89(10): 10G125, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399712

RESUMEN

Crystal x-ray imaging is frequently used in inertial confinement fusion and laser-plasma interaction applications as it has advantages compared to pinhole imaging, such as higher signal throughput, better achievable spatial resolution, and chromatic selection. However, currently used x-ray detectors are only able to obtain a single time resolved image per crystal. The dilation aided single-line-of-sight x-ray camera described here was designed for the National Ignition Facility (NIF) and combines two recent diagnostic developments, the pulse dilation principle used in the dilation x-ray imager and a ns-scale multi-frame camera that uses a hold and readout circuit for each pixel. This enables multiple images to be taken from a single-line-of-sight with high spatial and temporal resolution. At the moment, the instrument can record two single-line-of-sight images with spatial and temporal resolution of 35 µm and down to 35 ps, respectively, with a planned upgrade doubling the number of images to four. Here we present the dilation aided single-line-of-sight camera for the NIF, including the x-ray characterization measurements obtained at the COMET laser, as well as the results from the initial timing shot on the NIF.

8.
Rev Sci Instrum ; 88(10): 103503, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29092482

RESUMEN

Many experiments on Sandia National Laboratories' Z Pulsed Power Facility-a 30 MA, 100 ns rise-time, pulsed-power driver-use a monochromatic quartz crystal backlighter system at 1.865 keV (Si Heα) or 6.151 keV (Mn Heα) x-ray energy to radiograph an imploding liner (cylindrical tube) or wire array z-pinch. The x-ray source is generated by the Z-Beamlet laser, which provides two 527-nm, 1 kJ, 1-ns laser pulses. Radiographs of imploding, thick-walled beryllium liners at convergence ratios CR above 15 [CR=ri(0)/ri(t)] using the 6.151-keV backlighter system were too opaque to identify the inner radius ri of the liner with high confidence, demonstrating the need for a higher-energy x-ray radiography system. Here, we present a 7.242 keV backlighter system using a Ge(335) spherical crystal with the Co Heα resonance line. This system operates at a similar Bragg angle as the existing 1.865 keV and 6.151 keV backlighters, enhancing our capabilities for two-color, two-frame radiography without modifying the system integration at Z. The first data taken at Z include 6.2-keV and 7.2-keV two-color radiographs as well as radiographs of low-convergence (CR about 4-5), high-areal-density liner implosions.

9.
Rev Sci Instrum ; 87(11): 11E203, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910306

RESUMEN

A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.

10.
Phys Rev Lett ; 113(15): 155003, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375714

RESUMEN

This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed 10 Taxial magnetic field is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA, 100 ns rise time current on the Z facility. Despite a predicted peak implosion velocity of only 70 km = s, the fuel reaches a stagnation temperature of approximately 3 keV, with T(e) ≈ T(i), and produces up to 2 x 10(12) thermonuclear deuterium-deuterium neutrons. X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 µm over a 6 mm height and lasting approximately 2 ns. Greater than 10(10) secondary deuterium-tritium neutrons were observed, indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg = cm(2).

11.
Phys Rev Lett ; 113(15): 155004, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25375715

RESUMEN

Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

12.
Rev Sci Instrum ; 85(8): 083501, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25173263

RESUMEN

Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources.

13.
Phys Rev Lett ; 111(3): 035001, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23909333

RESUMEN

Detailed spectroscopic diagnostics of the stagnating plasma in two disparate z pinches allow, for the first time, the examination of the plasma properties within a 1D shock wave picture, demonstrating a good agreement with this picture. The conclusion is that for a wide range of imploding-plasma masses and current amplitudes, in experiments optimizing non-Planckian hard radiation yields, contrary to previous descriptions the stagnating plasma pressure is balanced by the implosion pressure, and the radiation energy is provided by the imploding-plasma kinetic energy, rather than by the magnetic-field pressure and magnetic-field-energy dissipation, respectively.

14.
Phys Rev Lett ; 109(13): 135004, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23030097

RESUMEN

The implosions of initially solid beryllium liners (tubes) have been imaged with penetrating radiography through to stagnation. These novel radiographic data reveal a high degree of azimuthal correlation in the evolving magneto-Rayleigh-Taylor structure at times just prior to (and during) stagnation, providing stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities. To emphasize this point, comparisons to 2D and 3D radiation magnetohydrodynamics simulations are also presented. Both agreement and substantial disagreement have been found, depending on how the liner's initial outer surface finish was modeled. The various models tested, and the physical implications of these models are discussed. These comparisons exemplify the importance of the experimental data obtained.

15.
Phys Rev Lett ; 105(18): 185001, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21231110

RESUMEN

The first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (∼100 ns) Z-pinch plasmas are reported. Sinusoidal perturbations on the surface of an initially solid Al tube (liner) with wavelengths of 25-400 µm were used to seed the instability. Radiographs with 15 µm resolution captured the evolution of the outer liner surface. Comparisons with numerical radiation magnetohydrodynamic simulations show remarkably good agreement down to 50 µm wavelengths.

16.
Phys Rev Lett ; 102(2): 025005, 2009 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-19257285

RESUMEN

X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator.

17.
Rev Sci Instrum ; 79(10): 10E914, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044569

RESUMEN

When used for the production of an x-ray imaging backlighter source on Sandia National Laboratories' recently upgraded 26 MA Z Accelerator, the terawatt-class, multikilojoule, 526.57 nm Z-Beamlet laser (ZBL) [P. K. Rambo et al., Appl. Opt. 44, 2421 (2005)], in conjunction with the 6.151 keV (1s(2)-1s2p triplet line of He-like Mn) curved-crystal imager [D. B. Sinars et al., Rev. Sci. Instrum. 75, 3672 (2004); G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)], is capable of providing a high quality x radiograph per Z shot for inertial confinement fusion (ICF), complex hydrodynamics, and other high-energy-density physics experiments. For example, this diagnostic has recently afforded microgram-scale mass perturbation measurements on an imploding ignition-scale 1 mg ICF capsule [G. R. Bennett et al., Phys. Rev. Lett. 99, 205003 (2007)], where the perturbation was initiated by a surrogate deuterium-tritium (DT) fuel fill tube. Using an angle-time multiplexing technique, ZBL now has the capability to provide two spatially and temporally separated foci in the Z chamber, allowing "two-frame" imaging to be performed, with an interframe time range of 2-20 ns. This multiplexing technique allows the full area of the four-pass amplifiers to be used for the two pulses, rather than split the amplifiers effectively into two rectangular sections, with one leg delayed with respect to the other, which would otherwise double the power imposed onto the various optics thereby halving the damage threshold, for the same irradiance on target. The 6.151 keV two frame technique has recently been used to image imploding wire arrays, using a 7.3 ns interframe time. The diagnostic will soon be converted to operate with p-rather than s-polarized laser light for enhanced laser absorption in the Mn foil, plus other changes (e.g., operation at the possibly brighter 6.181 keV Mn 1s(2)-1s2p singlet line), to increase x-ray yields. Also, a highly sensitive inline multiframe ultrafast (1 ns gate time) digital x-ray camera is being developed [G. R. Bennett et al., Rev. Sci. Instrum. 77, 10E322 (2006)] to extend the system to "four-frame" and markedly improve the signal-to-noise ratio. [At present, time-integrating Fuji BAS-TR2025 image plate (scanned with a Fuji BAS-5000 device) forms the time-integrated image-plane detector.].

18.
Phys Rev Lett ; 100(14): 145002, 2008 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-18518042

RESUMEN

Short-implosion-time 20-mm diameter, 300-wire tungsten arrays maintain high peak x-ray powers despite a reduction in peak current from 19 to 13 MA. The main radiation pulse on tests with a 1-mm on-axis rod may be explained by the observable j x B work done during the implosion, but bare-axis tests require sub-mm convergence of the magnetic field not seen except perhaps in >1 keV emission. The data include the first measurement of the imploding mass density profile of a wire-array Z pinch that further constrains simulation models.

19.
Phys Rev Lett ; 99(20): 205003, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-18233149

RESUMEN

On the first inertial-confinement-fusion ignition facility, the target capsule will be DT filled through a long, narrow tube inserted into the shell. microg-scale shell perturbations Delta m' arising from multiple, 10-50 microm-diameter, hollow SiO2 tubes on x-ray-driven, ignition-scale, 1-mg capsules have been measured on a subignition device. Simulations compare well with observation, whence it is corroborated that Delta m' arises from early x-ray shadowing by the tube rather than tube mass coupling to the shell, and inferred that 10-20 microm tubes will negligibly affect fusion yield on a full-ignition facility.

20.
Phys Rev Lett ; 95(18): 185001, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16383907

RESUMEN

Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA