Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Neuropediatrics ; 55(1): 23-31, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37871611

RESUMEN

BACKGROUND: Neonatal hypoxic-ischemic brain injury (HIBI) results from disruptions to blood supply and oxygen in the perinatal brain. The goal of this study was to measure brain sterol metabolites and plasma oxysterols after injury in a neonatal HIBI mouse model to assess for potential therapeutic targets in the brain biochemistry as well as potential circulating diagnostic biomarkers. METHODS: Postnatal day 9 CD1-IGS mouse pups were randomized to HIBI induced by carotid artery ligation followed by 30 minutes at 8% oxygen or to sham surgery and normoxia. Brain tissue was collected for sterol analysis by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Plasma was collected for oxysterol analysis by LC-MS/MS. RESULTS: There were minimal changes in brain sterol concentrations in the first 72 hours after HIBI. In severely injured brains, there was a significant increase in desmosterol, 7-DHC, 8-DHC, and cholesterol 24 hours after injury in the ipsilateral tissue. Lanosterol, 24-dehydrolathosterol, and 14-dehydrozymostenol decreased in plasma 24 hours after injury. Severe neonatal HIBI was associated with increased cholesterol and sterol precursors in the cortex at 24 hours after injury. CONCLUSIONS: Differences in plasma oxysterols were seen at 24 hours but were not present at 30 minutes after injury, suggesting that these sterol intermediates would be of little value as early diagnostic biomarkers.


Asunto(s)
Hipoxia-Isquemia Encefálica , Oxiesteroles , Animales , Ratones , Animales Recién Nacidos , Biomarcadores/metabolismo , Encéfalo , Colesterol/metabolismo , Colesterol/farmacología , Colesterol/uso terapéutico , Cromatografía Liquida , Hipoxia-Isquemia Encefálica/terapia , Oxígeno/metabolismo , Oxígeno/farmacología , Oxígeno/uso terapéutico , Oxiesteroles/metabolismo , Oxiesteroles/farmacología , Oxiesteroles/uso terapéutico , Espectrometría de Masas en Tándem , Modelos Animales de Enfermedad , Distribución Aleatoria
2.
Biomolecules ; 13(9)2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37759721

RESUMEN

The concurrent use of several medications is a common practice in the treatment of complex psychiatric conditions. One such commonly used combination is aripiprazole (ARI), an antipsychotic, and trazodone (TRZ), an antidepressant. In addition to their effects on dopamine and serotonin systems, both of these compounds are inhibitors of the 7-dehydrocholesterol reductase (DHCR7) enzyme. To evaluate the systemic and nervous system distribution of ARI and TRZ and their effects on cholesterol biosynthesis, adult mice were treated with both ARI and TRZ for 21 days. The parent drugs, their metabolites, and sterols were analyzed in the brain and various organs of mice using LC-MS/MS. The analyses revealed that ARI, TRZ, and their metabolites were readily detectable in the brain and organs, leading to changes in the sterol profile. The levels of medications, their metabolites, and sterols differed across tissues with notable sex differences. Female mice showed higher turnover of ARI and more cholesterol clearance in the brain, with several post-lanosterol intermediates significantly altered. In addition to interfering with sterol biosynthesis, ARI and TRZ exposure led to decreased ionized calcium-binding adaptor molecule 1 (IBA1) and increased DHCR7 protein expression in the cortex. Changes in sterol profile have been also identified in the spleen, liver, and serum, underscoring the systemic effect of ARI and TRZ on sterol biosynthesis. Long-term use of concurrent ARI and TRZ warrants further studies to fully evaluate the lasting consequences of altered sterol biosynthesis on the whole body.


Asunto(s)
Fitosteroles , Trazodona , Humanos , Femenino , Masculino , Ratones , Animales , Aripiprazol , Trazodona/farmacología , Cromatografía Liquida , Polifarmacia , Espectrometría de Masas en Tándem , Colesterol , Esteroles , Encéfalo
3.
ACS Chem Biol ; 18(9): 2073-2081, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639355

RESUMEN

The one-electron reduction of lipid hydroperoxides by low-valent iron species is believed to be a driver of cellular lipid peroxidation and associated ferroptotic cell death. We investigated reactions of cholesterol 7α-OOH, the primary cholesterol autoxidation product, with Fe2+ to find that 7-ketocholesterol (7-KC, an oxidation product) is the major product under these (reducing) conditions. Mechanistic studies reveal the intervention of a 1,2-H-atom shift upon formation of the 7-alkoxyl radical to yield a ketyl radical that can be oxidized by either Fe3+ or O2 to give 7-KC, the most abundant oxysterol in vivo. We also investigated the corresponding reduction of the isomeric cholesterol 5α-OOH and again found that an oxidation product (5-hydroxycholesten-3-one) predominates under reducing conditions. An intramolecular H-atom shift (this time 1,4-) in the initially formed 5-alkoxyl radical is suggested to yield a ketyl radical that is oxidized to give the observed product. It would appear that a 1,2-H shift also accounts for the predominance of ketones over alcohols when unsaturated fatty acid hydroperoxides are exposed to iron-based reductants, which had previously been reported with hematin and demonstrated here with Fe2+. The predominance of 7-KC over the corresponding alcohol is maintained when cholesterol 7α-OOH embedded in phospholipid liposomes is treated with Fe2+ or when ferroptosis is induced in mouse embryonic fibroblasts. Our observation that 7-KC accumulates in ferroptotic cells suggests that it may be a good biomarker for ferroptosis.


Asunto(s)
Fibroblastos , Peróxidos Lipídicos , Animales , Ratones , Etanol , Hierro , Compuestos Ferrosos
4.
Artículo en Inglés | MEDLINE | ID: mdl-37336389

RESUMEN

ω-Alkynyl-fatty acids can be used as probes for covalent binding to intracellular macromolecules. To inform future in vivo studies, we determined the rates of reaction of ω-alkynyl-labeled linoleate with recombinant enzymes of the skin 12R-lipoxygenase (12R-LOX) pathway involved in epidermal barrier formation (12R-LOX, epidermal lipoxygenase-3 (eLOX3), and SDR9C7). We also examined the reactivity of ω-alkynyl-arachidonic acid with representative lipoxygenase enzymes employing either "carboxyl end-first" substrate binding (5S-LOX) or "tail-first" (platelet-type 12S-LOX). ω-Alkynyl-linoleic acid was oxygenated by 12R-LOX at 62 ± 9 % of the rate compared to linoleic acid, the alkynyl-9R-HPODE product was isomerized by eLOX3 at only 43 ± 1 % of the natural substrate, whereas its epoxy alcohol product was converted to epoxy ketone linoleic by an NADH-dependent dehydrogenase (SDR9C7) with 91 ± 1 % efficiency. The results suggest the optimal approach will be application of the 12R-LOX/eLOX3-derived epoxyalcohol, which should be most efficiently incorporated into the pathway and allow subsequent analysis of covalent binding to epidermal proteins. Regarding the orientation of substrate binding in LOX catalysis, our results and previous reports suggest the ω-alkynyl group has a stronger inhibitory effect on tail-first binding, as might be expected. Beyond slowing the reaction, however, we found that the tail-first binding and transformation of ω-alkynyl-arachidonic acid by platelet-type 12S-LOX results in almost complete enzyme inactivation, possibly due to reactive intermediates blocking the enzyme active site. Overall, the results reinforce the conclusion that ω-alkynyl-fatty acids are suitable for selected applications after appropriate reactivity is established.


Asunto(s)
Ácidos Araquidónicos , Piel , Piel/metabolismo , Lipooxigenasa/metabolismo , Ácido Linoleico/química , Ácidos Linoleicos/metabolismo , Ácidos Grasos , Ácido Araquidónico
5.
PLoS One ; 18(5): e0285721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37186612

RESUMEN

BACKGROUND: Ozone (O3) exposure causes respiratory effects including lung function decrements, increased lung permeability, and airway inflammation. Additionally, baseline metabolic state can predispose individuals to adverse health effects from O3. For this reason, we conducted an exploratory study to examine the effect of O3 exposure on derivatives of cholesterol biosynthesis: sterols, oxysterols, and secosteroid (25-hydroxyvitamin D) not only in the lung, but also in circulation. METHODS: We obtained plasma and induced sputum samples from non-asthmatic (n = 12) and asthmatic (n = 12) adult volunteers 6 hours following exposure to 0.4ppm O3 for 2 hours. We quantified the concentrations of 24 cholesterol precursors and derivatives by UPLC-MS and 30 cytokines by ELISA. We use computational analyses including machine learning to determine whether baseline plasma sterols are predictive of O3 responsiveness. RESULTS: We observed an overall decrease in the concentration of cholesterol precursors and derivatives (e.g. 27-hydroxycholesterol) and an increase in concentration of autooxidation products (e.g. secosterol-B) in sputum samples. In plasma, we saw a significant increase in the concentration of secosterol-B after O3 exposure. Machine learning algorithms showed that plasma cholesterol was a top predictor of O3 responder status based on decrease in FEV1 (>5%). Further, 25-hydroxyvitamin D was positively associated with lung function in non-asthmatic subjects and with sputum uteroglobin, whereas it was inversely associated with sputum myeloperoxidase and neutrophil counts. CONCLUSION: This study highlights alterations in sterol metabolites in the airway and circulation as potential contributors to systemic health outcomes and predictors of pulmonary and inflammatory responsiveness following O3 exposure.


Asunto(s)
Ozono , Adulto , Humanos , Ozono/efectos adversos , Proyectos Piloto , Esteroles/farmacología , Cromatografía Liquida , Espectrometría de Masas en Tándem , Pulmón , Inflamación/inducido químicamente , Vitaminas/farmacología , Vitamina D/farmacología
6.
Chem Res Toxicol ; 36(4): 565-569, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36999736

RESUMEN

Cannabidiol (CBD) vaping products have become widely available in the U.S. since their legalization in 2018. However, little is known about their respiratory health effects. Here we show that aerosolization of commercial CBD vaping products generates a reactive CBD quinone (CBDQ) which forms adducts with protein cysteine residues. Using click chemistry and a novel in vitro vaping product exposure system (VaPES), we further demonstrate that CBDQ forms adducts with human bronchial epithelial cell proteins including Keap1 and activates KEAP1-Nrf2 stress response pathway genes. These results suggest that vaping CBD alters protein function and induces cellular stress pathways in the lung.


Asunto(s)
Cannabidiol , Vapeo , Humanos , Benzoquinonas , Cannabidiol/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción
7.
ACS Pharmacol Transl Sci ; 5(11): 1086-1096, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36407960

RESUMEN

Cholesterol is ubiquitous in cells; it plays a critical role in membrane structure and transport as well as in intracellular trafficking processes. There are suggestions that cholesterol metabolism is linked to innate immunity with inhibitors of DHCR7, the last enzyme in the cholesterol pathway, suggested to have potential as viral therapeutics nearly a decade ago. In fact, there are a number of highly prescribed pharmaceuticals that are off-target inhibitors of DHCR7, causing increased cellular levels of 7-dehydrodesmosterol (7-DHD) and 7-dehydrocholesterol (7-DHC). We report here dose-response studies of six such inhibitors on late-stage cholesterol biosynthesis in Neuro2a cells as well as their effect on infection of vesicular stomatitis virus (VSV). Four of the test compounds are FDA-approved drugs (cariprazine, trazodone, metoprolol, and tamoxifen), one (ifenprodil) has been the object of a recent Phase 2b COVID trial, and one (AY9944) is an experimental compound that has seen extensive use as a DHCR7 inhibitor. The three FDA-approved drugs inhibit replication of a GFP-tagged VSV with efficacies that mirror their effect on DHCR7. Ifenprodil and AY9944 have complex inhibitory profiles, acting on both DHCR7 and DHCR14, while tamoxifen does not inhibit DHCR7 and is toxic to Neuro2a at concentrations where it inhibits the Δ7-Δ8 isomerase of the cholesterol pathway. VSV itself affects the sterol profile in Neuro2a cells, showing a dose-response increase of dehydrolathosterol and lathosterol, the substrates for DHCR7, with a corresponding decrease in desmosterol and cholesterol. 7-DHD and 7-DHC are orders of magnitude more vulnerable to free radical chain oxidation than other sterols as well as polyunsaturated fatty esters, and the effect of these sterols on viral infection is likely a reflection of this fact of Nature.

8.
Prostate ; 82(14): 1378-1388, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35821619

RESUMEN

BACKGROUND: The development of benign prostatic hyperplasia (BPH) and medication-refractory lower urinary tract symptoms (LUTS) remain poorly understood. This study attempted to characterize the pathways associated with failure of medical therapy for BPH/LUTS. METHODS: Transitional zone tissue levels of cholesterol and steroids were measured in patients who failed medical therapy for BPH/LUTS and controls. Prostatic gene expression was measured using qPCR and BPH cells were used in organoid culture to study prostatic branching. RESULTS: BPH patients on 5-α-reductase inhibitor (5ARI) showed low levels of tissue dihydrotestosterone (DHT), increased levels of steroid 5-α-reductase type II (SRD5A2), and diminished levels of androgen receptor (AR) target genes, prostate-specific antigen (PSA), and transmembrane serine protease 2 (TMPRSS2). 5ARI raised prostatic tissue levels of glucocorticoids (GC), whereas alpha-adrenergic receptor antagonists (α-blockers) did not. Nuclear localization of GR in prostatic epithelium and stroma appeared in all patient samples. Treatment of four BPH organoid cell lines with dexamethasone, a synthetic GC, resulted in budding and branching. CONCLUSIONS: After failure of medical therapy for BPH/LUTS, 5ARI therapy continued to inhibit androgenesis but a 5ARI-induced pathway increased tissue levels of GC not seen in patients on α-blockers. GC stimulation of organoids indicated that the GC receptors are a trigger for controlling growth of prostate glands. A 5ARI-induced pathway revealed GC activation can serve as a master regulator of prostatic branching and growth.


Asunto(s)
Síntomas del Sistema Urinario Inferior , Hiperplasia Prostática , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Inhibidores de 5-alfa-Reductasa/farmacología , Dihidrotestosterona/metabolismo , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Síntomas del Sistema Urinario Inferior/patología , Masculino , Proteínas de la Membrana/metabolismo , Próstata/patología , Hiperplasia Prostática/genética
9.
J Immunol ; 208(7): 1525-1533, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35288471

RESUMEN

Severe asthma is characterized by steroid insensitivity and poor symptom control and is responsible for most asthma-related hospital costs. Therapeutic options remain limited, in part due to limited understanding of mechanisms driving severe asthma. Increased arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), is increased in human asthmatic lungs. In this study, we show that PRMT5 drives allergic airway inflammation in a mouse model reproducing multiple aspects of human severe asthma. We find that PRMT5 is required in CD4+ T cells for chronic steroid-insensitive severe lung inflammation, with selective T cell deletion of PRMT5 robustly suppressing eosinophilic and neutrophilic lung inflammation, pathology, airway remodeling, and hyperresponsiveness. Mechanistically, we observed high pulmonary sterol metabolic activity, retinoic acid-related orphan receptor γt (RORγt), and Th17 responses, with PRMT5-dependent increases in RORγt's agonist desmosterol. Our work demonstrates that T cell PRMT5 drives severe allergic lung inflammation and has potential implications for the pathogenesis and therapeutic targeting of severe asthma.


Asunto(s)
Asma , Hipersensibilidad , Animales , Asma/metabolismo , Granulocitos/metabolismo , Hipersensibilidad/metabolismo , Inflamación/metabolismo , Ratones , Células Th17/metabolismo
10.
Biomolecules ; 11(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34439893

RESUMEN

Smith-Lemli-Opitz syndrome (SLOS) is a severe monogenic disorder resulting in low cholesterol and high 7-dehydrocholesterol (7-DHC) levels. 7-DHC-derived oxysterols likely contribute to disease pathophysiology, and thus antioxidant treatment might be beneficial because of high oxidative stress. In a three-year prospective study, we investigated the effects of vitamin E supplementation in six SLOS patients already receiving dietary cholesterol treatment. Plasma vitamin A and E concentrations were determined by the high-performance liquid chromatography (HPLC) method. At baseline, plasma 7-DHC, 8-dehydrocholesterol (8-DHC) and cholesterol levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The clinical effect of the supplementation was assessed by performing structured parental interviews. At baseline, patients were characterized by low or low-normal plasma vitamin E concentrations (7.19-15.68 µmol/L), while vitamin A concentrations were found to be normal or high (1.26-2.68 µmol/L). Vitamin E supplementation resulted in correction or significant elevation of plasma vitamin E concentration in all patients. We observed reduced aggression, self-injury, irritability, hyperactivity, attention deficit, repetitive behavior, sleep disturbance, skin photosensitivity and/or eczema in 3/6 patients, with notable individual variability. Clinical response to therapy was associated with a low baseline 7-DHC + 8-DHC/cholesterol ratio (0.2-0.4). We suggest that determination of vitamin E status is important in SLOS patients. Supplementation of vitamin E should be considered and might be beneficial.


Asunto(s)
Suplementos Dietéticos , Síndrome de Smith-Lemli-Opitz/sangre , Síndrome de Smith-Lemli-Opitz/terapia , Vitamina E/uso terapéutico , Adolescente , Alelos , Antioxidantes/metabolismo , Conducta , Niño , Preescolar , Colesterol en la Dieta/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Deshidrocolesteroles/sangre , Femenino , Humanos , Lípidos/química , Masculino , Estrés Oxidativo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxiesteroles/metabolismo , Estudios Prospectivos , Esteroles/química , Espectrometría de Masas en Tándem , Vitamina A/metabolismo , Vitamina E/metabolismo , Adulto Joven
11.
Am J Respir Cell Mol Biol ; 65(5): 500-512, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34126877

RESUMEN

Ozone (O3) is a prevalent air pollutant causing lung inflammation. Previous studies demonstrate that O3 oxidizes lipids, such as cholesterol, in the airway to produce oxysterols, such as secosterol A (SecoA), which are electrophiles that are capable of forming covalent linkages preferentially with lysine residues and that consequently modify protein function. The breadth of proteins modified by this oxysterol as well as the biological consequences in the lung are unknown. By using an alkynyl-tagged form of SecoA and shotgun proteomics, we identified 135 proteins as being modified in bronchial epithelial cells. Among them was NLRP2 (NLR family pyrin domain-containing protein 2), which forms an alkynyl-tagged SecoA-protein adduct at lysine residue 1019 (K1019) in the terminal leucine-rich repeat region, a known regulatory region for NLR proteins. NLRP2 expression in airway epithelial cells was characterized, and CRISPR-Cas9 knockout (KO) and shRNA knockdown of NLRP2 were used to determine its function in O3-induced inflammation. No evidence for NLPR2 inflammasome formation or an NLRP2-dependent increase in caspase-1 activity in response to O3 was observed. O3-induced proinflammatory gene expression for CXCL2 and CXCL8/IL8 was further enhanced in NLRP2-KO cells, suggesting a negative regulatory role. Reconstitution of NLRP2-KO cells with the NLRP2 K1019 mutated to arginine partially blocked SecoA adduction and enhanced O3-induced IL-8 release as compared with wild-type NLRP2. Together, our findings uncover NLRP2 as a highly abundant, key component of proinflammatory signaling pathways in airway epithelial cells and as a novel mediator of O3-induced inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamación/metabolismo , Oxiesteroles/metabolismo , Ozono/efectos adversos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Sustitución de Aminoácidos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/inmunología , Bronquios/citología , Células Epiteliales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Immunoblotting , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Interleucina-8/metabolismo , Oxiesteroles/química
12.
Infect Immun ; 89(8): e0014621, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34001560

RESUMEN

The generation of oxidative stress is a host strategy used to control Staphylococcus aureus infections. Sulfur-containing amino acids, cysteine and methionine, are particularly susceptible to oxidation because of the inherent reactivity of sulfur. Due to the constant threat of protein oxidation, many systems evolved to protect S. aureus from protein oxidation or to repair protein oxidation after it occurs. The S. aureus peptide methionine sulfoxide reductase (Msr) system reduces methionine sulfoxide to methionine. Staphylococci have four Msr enzymes, which all perform this reaction. Deleting all four msr genes in USA300 LAC (Δmsr) sensitizes S. aureus to hypochlorous acid (HOCl) killing; however, the Δmsr strain does not exhibit increased sensitivity to H2O2 stress or superoxide anion stress generated by paraquat or pyocyanin. Consistent with increased susceptibility to HOCl killing, the Δmsr strain is slower to recover following coculture with both murine and human neutrophils than USA300 wild type. The Δmsr strain is attenuated for dissemination to the spleen following murine intraperitoneal infection and exhibits reduced bacterial burdens in a murine skin infection model. Notably, no differences in bacterial burdens were observed in any organ following murine intravenous infection. Consistent with these observations, USA300 wild-type and Δmsr strains have similar survival phenotypes when incubated with murine whole blood. However, the Δmsr strain is killed more efficiently by human whole blood. These findings indicate that species-specific immune cell composition of the blood may influence the importance of Msr enzymes during S. aureus infection of the human host.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Metionina Sulfóxido Reductasas/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/enzimología , Staphylococcus aureus/inmunología , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Peróxido de Hidrógeno/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/inmunología , Ratones , Viabilidad Microbiana/inmunología , Mutación , Oxidación-Reducción , Estrés Oxidativo , Staphylococcus aureus/genética
13.
ACS Pharmacol Transl Sci ; 4(2): 848-857, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33860207

RESUMEN

Sterol biosynthesis is a critical homeostatic mechanism of the body. Sterol biosynthesis begins during early embryonic life and continues throughout life. Many commonly used medications, prescribed >200 million times in the United States annually, have a sterol biosynthesis inhibition side effect. Using our high-throughput LC-MS/MS method, we assessed the levels of post-lanosterol sterol intermediates (lanosterol, desmosterol, and 7-dehydrocholesterol (7-DHC)) and cholesterol in 1312 deidentified serum samples from pregnant women. 302 samples showing elevated 7-DHC were analyzed for the presence of 14 medications known to inhibit the 7-dehydrocholesterol reductase enzyme (DHCR7) and increase 7-DHC. Of the 302 samples showing 7-DHC elevation, 43 had detectable levels of prescription medications with a DHCR7-inhibiting side effect. Taking more than one 7-DHC-elevating medication in specific combinations (polypharmacy) might exacerbate the effect on 7-DHC levels in pregnant women, suggesting a potentially additive or synergistic effect. As 7-DHC and 7-DHC-derived oxysterols are toxic, and as DHCR7-inhibiting medications are considered teratogens, our findings raise potential concerns regarding the use of prescription medication with a DHCR7-inhibiting side effect during pregnancy. The use of prescription medications during pregnancy is sometimes unavoidable, but choosing a medication without a DHCR7-inhibiting side effect might lead to a heathier pregnancy and prevent putatively adverse outcomes for the developing offspring.

14.
ACS Chem Neurosci ; 12(4): 735-745, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33528983

RESUMEN

Mouse brain contains over 100 million neuronal, glial, and other support cells. Developing neurons and astrocytes synthesize their own cholesterol, and disruption of this process can occur by both genetic and chemical mechanisms. In this study we have exposed cultured murine neurons and astrocytes to six different prescription medications that cross the placenta and blood-brain barriers and analyzed the effects of these drugs on cholesterol biosynthesis by an LC-MS/MS protocol that assays 14 sterols and 7 oxysterols in a single run. Three antipsychotics (haloperidol, cariprazine, aripiprazole), two antidepressants (trazodone and sertraline), and an antiarhythmic (amiodarone) inhibited one or more sterol synthesis enzymes. The result of the exposures was a dose-dependent increase in levels of various sterol intermediates and a decreased level of cholesterol in the cultured cells. Four prescription medications (haloperidol, aripiprazole, cariprazine, and trazodone) acted primarily on the DHCR7 enzyme. The result of this exposure was an increase in 7-dehydrocholesterol in neurons and astrocytes to levels that were comparable to those found in cultured neurons and astrocytes from transgenic mice that carried a Dhcr7 pathogenic mutation modeling the neurodevelopmental disorder Smith-Lemli-Opitz syndrome.


Asunto(s)
Colesterol , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Femenino , Ratones , Neuronas , Embarazo , Prescripciones
15.
Transl Psychiatry ; 11(1): 85, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526772

RESUMEN

Trazodone (TRZ) is a commonly prescribed antidepressant with significant off-label use for insomnia. A recent drug screening revealed that TRZ interferes with sterol biosynthesis, causing elevated levels of sterol precursor 7-dehydrocholesterol (7-DHC). Recognizing the well-documented, disruptive effect of 7-DHC on brain development, we designed a study to analyze TRZ effects during pregnancy. Utilizing an in vivo model and human biomaterial, our studies were designed to also account for drug interactions with maternal or offspring Dhcr7 genotype. In a maternal exposure model, we found that TRZ treatment increased 7-DHC and decreased desmosterol levels in brain tissue in newborn pups. We also observed interactions between Dhcr7 mutations and maternal TRZ exposure, giving rise to the most elevated toxic oxysterols in brains of Dhcr7+/- pups with maternal TRZ exposure, independently of the maternal Dhcr7 genotype. Therefore, TRZ use during pregnancy might be a risk factor for in utero development of a neurodevelopmental disorder, especially when the unborn child is of DHCR7+/- genotype. The effects of TRZ on 7-DHC was corroborated in human serum samples. We analyzed sterols and TRZ levels in individuals with TRZ prescriptions and found that circulating TRZ levels correlated highly with 7-DHC. The abundance of off-label use and high prescription rates of TRZ might represent a risk for the development of DHCR7 heterozygous fetuses. Thus, TRZ use during pregnancy is potentially a serious public health concern.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Trazodona , Encéfalo/metabolismo , Niño , Colesterol , Femenino , Humanos , Recién Nacido , Exposición Materna , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Embarazo
16.
Rapid Commun Mass Spectrom ; 34(22): e8911, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32738001

RESUMEN

RATIONALE: The Lipidyzer platform was recently updated on a SCIEX QTRAP 6500+ mass spectrometer and offers a targeted lipidomics assay including 1150 different lipids. We evaluated this targeted approach using human plasma samples and compared the results against a global untargeted lipidomics method using a high-resolution Q Exactive HF Orbitrap mass spectrometer. METHODS: Lipids from human plasma samples (N = 5) were extracted using a modified Bligh-Dyer approach. A global untargeted analysis was performed using a Thermo Orbitrap Q Exactive HF mass spectrometer, followed by data analysis using Progenesis QI software. Multiple reaction monitoring (MRM)-based targeted analysis was performed using a QTRAP 6500+ mass spectrometer, followed by data analysis using SCIEX OS software. The samples were injected on three separate days to assess reproducibility for both approaches. RESULTS: Overall, 465 lipids were identified from 11 lipid classes in both approaches, of which 159 were similar between the methods, 168 lipids were unique to the MRM approach, and 138 lipids were unique to the untargeted approach. Phosphatidylcholine and phosphatidylethanolamine species were the most commonly identified using the untargeted approach, while triacylglycerol species were the most commonly identified using the targeted MRM approach. The targeted MRM approach had more consistent relative abundances across the three days than the untargeted approach. Overall, the coefficient of variation for inter-day comparisons across all lipid classes was ∼ 23% for the untargeted approach and ∼ 9% for the targeted MRM approach. CONCLUSIONS: The targeted MRM approach identified similar numbers of lipids to a conventional untargeted approach, but had better representation of 11 lipid classes commonly identified by both approaches. Based on the separation methods employed, the conventional untargeted approach could better detect phosphatidylcholine and sphingomyelin lipid classes. The targeted MRM approach had lower inter-day variability than the untargeted approach when tested using a small group of plasma samples. These studies highlight the advantages in using targeted MRM approaches for human plasma lipidomics analysis.


Asunto(s)
Lipidómica/métodos , Lípidos/sangre , Espectrometría de Masas en Tándem/métodos , Anciano , Cromatografía Liquida , Femenino , Humanos , Masculino , Fosfatidilcolinas/sangre , Reproducibilidad de los Resultados , Programas Informáticos , Triglicéridos/sangre
17.
J Biol Chem ; 295(36): 12727-12738, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32690608

RESUMEN

Inhalation of the ambient air pollutant ozone causes lung inflammation and can suppress host defense mechanisms, including impairing macrophage phagocytosis. Ozone reacts with cholesterol in the lung to form oxysterols, like secosterol A and secosterol B (SecoA and SecoB), which can form covalent adducts on cellular proteins. How oxysterol-protein adduction modifies the function of lung macrophages is unknown. Herein, we used a proteomic screen to identify lung macrophage proteins that form adducts with ozone-derived oxysterols. Functional ontology analysis of the adductome indicated that protein binding was a major function of adducted proteins. Further analysis of specific proteins forming adducts with SecoA identified the phagocytic receptors CD206 and CD64. Adduction of these receptors with ozone-derived oxysterols impaired ligand binding and corresponded with reduced macrophage phagocytosis. This work suggests a novel mechanism for the suppression of macrophage phagocytosis following ozone exposure through the generation of oxysterols and the formation of oxysterol-protein adducts on phagocytic receptors.


Asunto(s)
Pulmón/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxiesteroles/metabolismo , Ozono/metabolismo , Fagocitosis , Receptores de IgG/metabolismo , Receptores Inmunológicos/metabolismo , Colesterol/análogos & derivados , Colesterol/metabolismo , Humanos , Pulmón/citología , Macrófagos/citología , Células THP-1
18.
Mol Psychiatry ; 25(11): 2685-2694, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32504050

RESUMEN

Cariprazine (CAR) is a strong inhibitor of the Dhcr7 enzyme, the last enzyme in the cholesterol biosynthesis pathway. We assessed the effects of CAR on maternally exposed Dhcr7+/- and wild-type mouse offspring, and tested the biochemical effects of CAR in human serum samples. Dhcr7+/- and wild-type time-pregnant mice were exposed to vehicle or 0.2 mg/kg CAR from E12 to E19. Levels of CAR, CAR metabolites, sterols, and oxysterols were measured in the brain of maternally exposed offspring at various time points using LC-MS/MS. Embryonic exposure to CAR significantly increased levels of 7-DHC in all organs of exposed embryos, with a particularly strong effect in the brain. Detectable levels of CAR and elevated 7-DHC were observed in the brain of newborn pups 14 days after drug exposure. In addition, CAR altered sterol metabolism in all animals analyzed, with the strongest effect on the brain of Dhcr7+/- pups born to Dhcr7+/- dams. Furthermore, CAR elevated toxic oxysterols in the brain of maternally exposed Dhcr7+/- offspring to levels approaching those seen in a mouse model of Smith-Lemli-Opitz syndrome. Finally, we observed that patients taking CAR have elevated 7-DHC in their serum. In summary, maternal DHCR7 heterozygosity, combined with offspring DHCR7 heterozygosity might represent a vulnerability factor to medications that interfere with sterol biosynthesis. Due to the conserved sterol biosynthesis between mice and humans, we suggest that the 1-3% of patient population with single-allele DHCR7 mutations might not be ideal candidates for CAR use, especially if they are nursing, pregnant or plan to become pregnant.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Colesterol/biosíntesis , Exposición Materna/efectos adversos , Piperazinas/administración & dosificación , Piperazinas/efectos adversos , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Antipsicóticos/administración & dosificación , Antipsicóticos/efectos adversos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Cromatografía Liquida , Femenino , Humanos , Masculino , Ratones , Embarazo , Espectrometría de Masas en Tándem
19.
ACS Chem Neurosci ; 11(10): 1413-1423, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32286791

RESUMEN

Amiodarone is prescribed for the treatment and prevention of irregular heartbeats. Although effective in clinical practice, the long-term use of amiodarone has many unwanted side effects, including cardiac, pulmonary, hepatic, and neurological toxicities. Our objective was to elucidate effects of amiodarone exposure on the cholesterol metabolism in cultured neuronal and non-neuronal cells and in individuals taking amiodarone. We observed that amiodarone increases distinct cholesterol precursors in different cell types in a dose-dependent manner. In liver and kidney cell lines, amiodarone causes increase in desmosterol levels, and in primary cortical neurons and astrocytes, amiodarone increases zymosterol, zymostenol, and 8-dehydrocholesterol (8-DHC). We conclude that amiodarone inhibits two enzymes in the pathway, emopamil binding protein (EBP) and dehydrocholesterol reductase 24 (DHCR24). Cortical neurons and astrocytes are more sensitive to amiodarone than liver and kidney cell lines. We confirmed the inhibition of EBP enzyme by analyzing the sterol intermediates in EBP-deficient Neuro2a cells versus amiodarone-treated control Neuro2a cells. To determine if the cell culture experiments have clinical relevance, we analyzed serum samples from amiodarone users. We found that in patient serum samples containing detectable amount of amiodarone there are elevated levels of the sterol precursors zymosterol, 8-DHC, and desmosterol. This study illustrates the need for close monitoring of blood biochemistry during prolonged amiodarone use to minimize the risk of side effects.


Asunto(s)
Amiodarona , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Amiodarona/farmacología , Proteínas Portadoras , Colesterol , Deshidrocolesteroles , Desmosterol , Humanos , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Verapamilo/análogos & derivados
20.
Environ Health Perspect ; 128(1): 17014, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31985273

RESUMEN

BACKGROUND: Changes in cholesterol metabolism are common hallmarks of neurodevelopmental pathologies. A diverse array of genetic disorders of cholesterol metabolism support this claim as do multiple lines of research that demonstrate chemical inhibition of cholesterol biosynthesis compromises neurodevelopment. Recent work has revealed that a number of commonly used pharmaceuticals induce changes in cholesterol metabolism that are similar to changes induced by genetic disorders with devastating neurodevelopmental deficiencies. OBJECTIVES: We tested the hypothesis that common environmental toxicants may also impair cholesterol metabolism and thereby possibly contribute to neurodevelopmental toxicity. METHODS: Using high-throughput screening with a targeted lipidomic analysis and the mouse neuroblastoma cell line, Neuro-2a, the ToxCast™ chemical library was screened for compounds that impact sterol metabolism. Validation of chemical effects was conducted by assessing cholesterol biosynthesis in human induced pluripotent stem cell (hiPSC)-derived neuroprogenitors using an isotopically labeled cholesterol precursor and by monitoring product formation with UPLC-MS/MS. RESULTS: Twenty-nine compounds were identified as validated lead-hits, and four were prioritized for further study (endosulfan sulfate, tributyltin chloride, fenpropimorph, and spiroxamine). All four compounds were validated to cause hypocholesterolemia in Neuro-2a cells. The morpholine-like fungicides, fenpropimorph and spiroxamine, mirrored their Neuro-2a activity in four immortalized human cell lines and in a human neuroprogenitor model derived from hiPSCs, but endosulfan sulfate and tributyltin chloride did not. CONCLUSIONS: These data reveal the existence of environmental compounds that interrupt cholesterol biosynthesis and that methodologically hiPSC neuroprogenitor cells provide a particularly sensitive system to monitor the effect of small molecules on de novo cholesterol formation. https://doi.org/10.1289/EHP5053.


Asunto(s)
Contaminantes Ambientales/toxicidad , Pruebas de Toxicidad , Animales , Colesterol/biosíntesis , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...