Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Extra Corpor Technol ; 56(3): 101-107, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39303131

RESUMEN

BACKGROUND: Patients supported with extracorporeal life support (ECLS) circuits such as ECMO and CRRT often require high doses of sedatives and analgesics, including ketamine and dexmedetomidine. Concentrations of many medications are affected by ECLS circuits through adsorption to the circuit components, dialysis, as well as the large volume of blood used to prime the circuits. However, the impact of ECLS circuits on ketamine and dexmedetomidine pharmacokinetics has not been well described. This study determined ketamine and dexmedetomidine extraction by extracorporeal circuits in an ex-vivo system. METHODS: Medication was administered at therapeutic concentration to blood-primed, closed-loop ex-vivo ECMO and CRRT circuits. Drug concentrations were measured in plasma, hemofiltrate, and control samples at multiple time points throughout the experiments. At each sample time point, the percentage of drug recovery was calculated. RESULTS: Ketamine plasma concentration in the ECMO and CRRT circuits decreased rapidly, with 43.8% recovery (SD = 0.6%) from ECMO circuits after 8 h and 3.3% (SD = 1.8%) recovery from CRRT circuits after 6 h. Dexmedetomidine was also cleared from CRRT circuits, with 20.3% recovery (SD = 1.8%) after 6 h. Concentrations of both medications were very stable in the control experiments, with approximately 100% drug recovery of both ketamine and dexmedetomidine after 6 h. CONCLUSION: Ketamine and dexmedetomidine concentrations are significantly affected by ECLS circuits, indicating that dosing adjustments are needed for patients supported with ECMO and CRRT.


Asunto(s)
Dexmedetomidina , Oxigenación por Membrana Extracorpórea , Ketamina , Ketamina/administración & dosificación , Ketamina/farmacocinética , Ketamina/sangre , Dexmedetomidina/administración & dosificación , Dexmedetomidina/farmacocinética , Oxigenación por Membrana Extracorpórea/métodos , Humanos , Hipnóticos y Sedantes/farmacocinética , Hipnóticos y Sedantes/administración & dosificación , Hipnóticos y Sedantes/sangre
2.
Clin Pharmacokinet ; 63(9): 1343-1356, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39331235

RESUMEN

BACKGROUND AND OBJECTIVE: Because of the pathophysiological changes associated with critical illness and the use of extracorporeal life support (ECLS) such as continuous renal replacement therapy (CRRT) and extracorporeal membrane oxygenation (ECMO), the pharmacokinetics of drugs are often altered. The objective of this study was to develop a physiologically based pharmacokinetic (PBPK) model for anakinra in children that accounts for the physiological changes associated with critical illness and ECLS technology to guide appropriate pharmacotherapy. METHODS: A PBPK model for anakinra was first developed in healthy individuals prior to extrapolating to critically ill children receiving ECLS. To account for the impact of anakinra clearance by the dialysis circuit, a CRRT compartment was added to the pediatric PBPK model and parameterized using data from a previously published ex-vivo study. Additionally, an ECMO compartment was added to the whole-body structure to create the final anakinra ECLS-PBPK model. The final model structure was validated by comparing predicted concentrations with observed patient data. Due to limited information in guiding anakinra dosing in this population, in-silico dose simulations were conducted to provide baseline recommendations. RESULTS: By accounting for changes in physiology and the addition of ECLS compartments, the final ECLS-PBPK model predicted the observed plasma concentrations in an adolescent receiving subcutaneous anakinra. Furthermore, dosing simulations suggest that anakinra exposure in adolescents receiving ECLS is similar to that in healthy counterparts. CONCLUSION: The anakinra ECLS-PBPK model developed in this study is the first to predict plasma concentrations in a population receiving simultaneous CRRT and ECMO. Dosing simulations provided may be used to inform anakinra use in critically ill children and guide future clinical trial planning.


Asunto(s)
Enfermedad Crítica , Oxigenación por Membrana Extracorpórea , Proteína Antagonista del Receptor de Interleucina 1 , Modelos Biológicos , Humanos , Proteína Antagonista del Receptor de Interleucina 1/farmacocinética , Proteína Antagonista del Receptor de Interleucina 1/administración & dosificación , Enfermedad Crítica/terapia , Oxigenación por Membrana Extracorpórea/métodos , Niño , Preescolar , Adolescente , Masculino , Femenino , Lactante , Terapia de Reemplazo Renal Continuo/métodos , Simulación por Computador
3.
Toxicol Appl Pharmacol ; 345: 19-25, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29499249

RESUMEN

Many diseases and disorders are linked to exposure to endocrine disrupting chemicals (EDCs) that mimic the function of natural estrogen hormones. Here we present a Rapid Adaptable Portable In-vitro Detection biosensor platform (RAPID) for detecting chemicals that interact with the human estrogen receptor ß (hERß). This biosensor consists of an allosteric fusion protein, which is expressed using cell-free protein synthesis technology and is directly assayed by a colorimetric response. The resultant biosensor successfully detected known EDCs of hERß (BPA, E2, and DPN) at similar or better detection range than an analogous cell-based biosensor, but in a fraction of time. We also engineered cell-free protein synthesis reactions with RNAse inhibitors to increase production yields in the presence of human blood and urine. The RAPID biosensor successfully detects EDCs in these human samples in the presence of RNAse inhibitors. Engineered cell-free protein synthesis facilitates the use of protein biosensors in complex sample matrices without cumbersome protein purification.


Asunto(s)
Técnicas Biosensibles/métodos , Sistema Libre de Células/metabolismo , Disruptores Endocrinos/sangre , Disruptores Endocrinos/orina , Biosíntesis de Proteínas/fisiología , Sistema Libre de Células/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/farmacología , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/metabolismo , Humanos , Biosíntesis de Proteínas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA