Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Intervalo de año de publicación
1.
Toxicology ; 505: 153813, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663822

RESUMEN

The increasing use of cannabis during pregnancy raises concerns about its impact on fetal development. While cannabidiol (CBD) shows therapeutic promise, its effects during pregnancy remain uncertain. We investigated CBD's influence on tryptophan (TRP) metabolism in the human placenta. TRP is an essential amino acid that is metabolized via the serotonin and kynurenine (KYN) pathways, which are critical for fetal neurodevelopment. We used human term villous placental explants, an advanced ex vivo model, to study CBD's impact on key TRP metabolic enzymes. In addition, vesicles isolated from the microvillous membrane (MVM) of the human placenta were used to assess CBD's effect on placental serotonin uptake. Explants were exposed to CBD at therapeutic (0.1, 1, 2.5 µg/ml) and non-therapeutic (20 and 40 µg/ml) concentrations to determine its effects on the gene and protein expression of key enzymes in TRP metabolism and metabolite release. CBD upregulated TRP hydroxylase (TPH) and downregulated monoamine oxidase (MAO-A), resulting in reduced levels of 5-hydroxyindoleacetic acid (HIAA). It also downregulated serotonin transporter expression and inhibited serotonin transport across the MVM by up to 60% while simultaneously enhancing TRP metabolism via the kynurenine pathway by upregulating indoleamine-pyrrole 2,3-dioxygenase (IDO-1). Among kynurenine pathway enzymes, kynurenine 3 monooxygenase (KMO) was upregulated while kynurenine aminotransferase 1 (KAT-1) was downregulated; the former is associated with neurotoxic metabolite production, while the latter is linked to reduced neuroprotective metabolite levels. Overall, these results indicate that CBD modulates TRP catabolism in the human placenta, potentially disrupting the tightly regulated homeostasis of the serotonin and KYN pathways.


Asunto(s)
Cannabidiol , Placenta , Serotonina , Triptófano , Humanos , Femenino , Embarazo , Triptófano/metabolismo , Placenta/metabolismo , Placenta/efectos de los fármacos , Cannabidiol/farmacología , Serotonina/metabolismo , Quinurenina/metabolismo
2.
Sci Rep ; 14(1): 6948, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521816

RESUMEN

Catecholamines norepinephrine and dopamine have been implicated in numerous physiological processes within the central nervous system. Emerging evidence has highlighted the importance of tightly regulated monoamine levels for placental functions and fetal development. However, the complexities of synthesis, release, and regulation of catecholamines in the fetoplacental unit have not been fully unraveled. In this study, we investigated the expression of enzymes and transporters involved in synthesis, degradation, and transport of norepinephrine and dopamine in the human placenta and rat fetoplacental unit. Quantitative PCR and Western blot analyses were performed in early-to-late gestation in humans (first trimester vs. term placenta) and mid-to-late gestation in rats (placenta and fetal brain, intestines, liver, lungs, and heart). In addition, we analyzed the gene expression patterns in isolated primary trophoblast cells from the human placenta and placenta-derived cell lines (HRP-1, BeWo, JEG-3). In both human and rat placentas, the study identifies the presence of only PNMT, COMT, and NET at the mRNA and protein levels, with the expression of PNMT and NET showing gestational age dependency. On the other hand, rat fetal tissues consistently express the catecholamine pathway genes, revealing distinct developmental expression patterns. Lastly, we report significant transcriptional profile variations in different placental cell models, emphasizing the importance of careful model selection for catecholamine metabolism/transport studies. Collectively, integrating findings from humans and rats enhances our understanding of the dynamic regulatory mechanisms that underlie catecholamine dynamics during pregnancy. We identified similar patterns in both species across gestation, suggesting conserved molecular mechanisms and potentially shedding light on shared biological processes influencing placental development.


Asunto(s)
Catecolaminas , Dopamina , Embarazo , Ratas , Humanos , Animales , Femenino , Línea Celular Tumoral , Placenta , Norepinefrina
3.
Biol Reprod ; 110(4): 722-738, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38145492

RESUMEN

Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.


Asunto(s)
Quinurenina , Placenta , Humanos , Embarazo , Femenino , Placenta/metabolismo , Quinurenina/metabolismo , Triptófano/metabolismo , Lipopolisacáridos/toxicidad , Serotonina/metabolismo , Poli I/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo
4.
Arch Toxicol ; 96(12): 3265-3277, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35972551

RESUMEN

Targeting mutations that trigger acute myeloid leukaemia (AML) has emerged as a refined therapeutic approach in recent years. Enasidenib (Idhifa) is the first selective inhibitor of mutated forms of isocitrate dehydrogenase 2 (IDH2) approved against relapsed/refractory AML. In addition to its use as monotherapy, a combination trial of enasidenib with standard intensive induction therapy (daunorubicin + cytarabine) is being evaluated. This study aimed to decipher enasidenib off-target molecular mechanisms involved in anthracycline resistance, such as reduction by carbonyl reducing enzymes (CREs) and drug efflux by ATP-binding cassette (ABC) transporters. We analysed the effect of enasidenib on daunorubicin (Daun) reduction by several recombinant CREs and different human cell lines expressing aldo-keto reductase 1C3 (AKR1C3) exogenously (HCT116) or endogenously (A549 and KG1a). Additionally, A431 cell models overexpressing ABCB1, ABCG2, or ABCC1 were employed to evaluate enasidenib modulation of Daun efflux. Furthermore, the potential synergism of enasidenib over Daun cytotoxicity was quantified amongst all the cell models. Enasidenib selectively inhibited AKR1C3-mediated inactivation of Daun in vitro and in cell lines expressing AKR1C3, as well as its extrusion by ABCB1, ABCG2, and ABCC1 transporters, thus synergizing Daun cytotoxicity to overcome resistance. This work provides in vitro evidence on enasidenib-mediated targeting of the anthracycline resistance actors AKR1C3 and ABC transporters under clinically achievable concentrations. Our findings may encourage its combination with intensive chemotherapy and even suggest that the effectiveness of enasidenib as monotherapy against AML could lie beyond the targeting of mIDH2.


Asunto(s)
Daunorrubicina , Leucemia Mieloide Aguda , Humanos , Daunorrubicina/farmacología , Transportadoras de Casetes de Unión a ATP/metabolismo , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Antraciclinas , Antibióticos Antineoplásicos/uso terapéutico , Citarabina/uso terapéutico , Adenosina Trifosfato
5.
Biochem Pharmacol ; 192: 114710, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34339712

RESUMEN

Bcr-Abl tyrosine kinase inhibitors significantly improved Philadelphia chromosome-positive leukaemia therapy. Apart from Bcr-Abl kinase, imatinib, dasatinib, nilotinib, bosutinib and ponatinib are known to have additional off-target effects that might contribute to their antitumoural activities. In our study, we identified aldo-keto reductase 1B10 (AKR1B10) as a novel target for dasatinib. The enzyme AKR1B10 is upregulated in several cancers and influences the metabolism of chemotherapy drugs, including anthracyclines. AKR1B10 reduces anthracyclines to alcohol metabolites that show less antineoplastic properties and tend to accumulate in cardiac tissue. In our experiments, clinically achievable concentrations of dasatinib selectively inhibited AKR1B10 both in experiments with recombinant enzyme (Ki = 0.6 µM) and in a cellular model (IC50 = 0.5 µM). Subsequently, the ability of dasatinib to attenuate AKR1B10-mediated daunorubicin (Daun) resistance was determined in AKR1B10-overexpressing cells. We have demonstrated that dasatinib can synergize with Daun in human cancer cells and enhance its therapeutic effectiveness. Taken together, our results provide new information on how dasatinib may act beyond targeting Bcr-Abl kinase, which may help to design new chemotherapy regimens, including those with anthracyclines.


Asunto(s)
Aldo-Ceto Reductasas/antagonistas & inhibidores , Dasatinib/administración & dosificación , Daunorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/administración & dosificación , Células A549 , Aldo-Ceto Reductasas/química , Aldo-Ceto Reductasas/metabolismo , Antineoplásicos/administración & dosificación , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/metabolismo , Células HCT116 , Humanos , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína
6.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322571

RESUMEN

Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) has been correlated with AKR1C3 expression, as this enzyme metabolises several drugs including anthracyclines. Therefore, the development of selective AKR1C3 inhibitors may help to overcome chemoresistance in clinical practice. In this regard, we demonstrated that Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib efficiently prevented daunorubicin (Dau) inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in cancer cells. This revealed a synergistic effect of BTK inhibitors on Dau cytotoxicity in cancer cells expressing AKR1C3 both exogenously and endogenously, thus reverting anthracycline resistance in vitro. These findings suggest that BTK inhibitors have a novel off-target action, which can be exploited against leukaemia through combination regimens with standard chemotherapeutics like anthracyclines.

7.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066440

RESUMEN

Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.


Asunto(s)
Feto/metabolismo , Placenta/metabolismo , Transcriptoma , Triptófano/metabolismo , Animales , Femenino , Feto/embriología , Regulación del Desarrollo de la Expresión Génica , Redes y Vías Metabólicas , Placenta/embriología , Embarazo , Ratas , Ratas Wistar , Triptófano/genética
8.
Parasitol Res ; 108(1): 1-5, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20809418

RESUMEN

Trypanosoma evansi is a worldwide distributed hemoparasite with a strong economic impact in veterinary activities. Despite widespread knowledge about the etiology of the disease caused by T. evansi, there are few detailed studies about the metabolism of this parasite. The aim of this study was to determine the presence of Acetylcholinesterase (AChE) in T. evansi through a strategy of subcellular localization and confocal microscopy. The localization of the AChE by differential and isopycnic centrifugation strategy showed that this enzyme has a predominant localization in the glycosome, similar to hexokinase, and it is not present in either the cytosol or the plasma membrane. This study shows novel data that help to understand the non-neuronal role of AChE in the Trypanosomatidae family.


Asunto(s)
Acetilcolinesterasa/análisis , Microcuerpos/química , Microcuerpos/enzimología , Trypanosoma/química , Trypanosoma/enzimología , Centrifugación , Humanos , Microscopía Confocal
9.
Exp Parasitol ; 124(3): 301-5, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19931529

RESUMEN

Trypanosoma evansi is the causative agent of equine trypanosomoses. The disease is characterized by fever, anemia, and cachexia. Peroxidative damage of the red blood cells caused by the parasite, may contribute to the pathogenesis of the anemia seen in trypanosomoses. Consequently, we evaluated the hematocrit, the osmotic fragility of the red blood cells, the level of lipid peroxidation and the activity of the Ca-ATPase of red blood cell ghosts from rats experimentally infected with T. evansi. After 72 h inoculation, the hematocrit decreased from 49.5% to 33%; the osmotic fragility of the red blood cells was approximately 40% higher as compared to the healthy animals; and the red blood cell ghosts showed a higher level of lipid peroxidation and a lower Ca-ATPase activity than the red cell ghosts from the healthy animals. In vitro incubations of red blood cells from healthy animals with T. evansi, produced also a significant increase of the osmotic fragility of the red blood cells.


Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Eritrocitos/parasitología , Peroxidación de Lípido , Trypanosoma/fisiología , Tripanosomiasis/sangre , Análisis de Varianza , Animales , Membrana Eritrocítica/química , Membrana Eritrocítica/parasitología , Eritrocitos/enzimología , Eritrocitos/metabolismo , Hematócrito , Masculino , Fragilidad Osmótica , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Factores de Tiempo
10.
Mol Biochem Parasitol ; 126(2): 251-62, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12615324

RESUMEN

The Trypanosoma cruzi hexokinase gene has been cloned, sequenced, and expressed as an active enzyme in Escherichia coli. Sequence analysis revealed 67% identity with its counterpart in Trypanosoma brucei but low similarity with all other available hexokinase sequences including those of human. It contains an N-terminal peroxisome-targeting signal (PTS-2) and has a calculated basic isoelectric point (pI = 9.67), a feature often associated with glycosomal proteins. The polypeptide has a predicted mass of approximately 50 kDa similar to that of many non-vertebrate hexokinases and the vertebrate hexokinase isoenzyme IV. The natural enzyme was purified to homogeneity from T. cruzi epimastigotes and appeared to exist in several aggregation states, an apparent tetramer being the predominant form. Its kinetic properties were compared with those of the purified recombinant protein. Higher K(m) values for glucose and ATP were found for the (His)(6)-tag-containing recombinant hexokinase. However, removal of the tag produced an enzyme displaying similar values as the natural enzyme (K(m) for glucose = 43 and 60 microM for the natural and the recombinant protein, respectively). None of these enzymes presented activity with fructose. As reported previously for hexokinases from several trypanosomatids, no inhibition was exerted by glucose 6-phosphate (G6-P). In contrast, a mixed-type inhibition was observed with inorganic pyrophosphate (PPi, K(i) = 0.5mM).


Asunto(s)
Hexoquinasa/genética , Hexoquinasa/metabolismo , Trypanosoma cruzi/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Escherichia coli/enzimología , Escherichia coli/genética , Hexoquinasa/química , Humanos , Isoenzimas/química , Isoenzimas/genética , Cinética , Datos de Secuencia Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Trypanosoma cruzi/genética
11.
Rev. psicoanal ; 13(4): 421-435, 1956.
Artículo en Español | BINACIS | ID: biblio-1172417

Asunto(s)
Psicoanálisis
12.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...