Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 258(Pt 1): 128740, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101678

RESUMEN

Acetylated starch shows enhanced thermal stability and moisture resistance, but its compatibilization with other more hydrophilic polysaccharides remains poor or unknown. In this study, the feasibility of thermomechanically compounding organocatalytically acetylated pea starch (APS), produced at two different degrees of substitution with alkanoyl groups (DSacyl, 0.39 and 1.00), with native pea starch (NPS), high (HMP) and low methoxyl (LMP) citrus pectin, and sugar beet pectin (SBP, a naturally acetylated pectin) for developing hot-pressed bioplastics was studied. Generally, APS decreased hydrogen bonding (ATR-FTIR) and crystallinity (XRD) of NPS films at different levels, depending on its DSacyl. The poor compatibility between APS and NPS or HMP was confirmed by ATR-FTIR imaging. Contrariwise, APS with DSacyl 1 was effectively thermomechanically mixed with the acetylated SBP matrix, maintaining homogeneous distribution within it (ATR-FTIR imaging). APS (any DSacyl) significantly increased the visible/UV light opacity of NPS-based films and decreased their water vapor transmission rate (WVTR, by ca. 11 %) and surface water wettability (by ca. 3 times). In comparison to NPS-APS films, pectin-APS showed higher visible/UV light absorption, tensile strength (ca.2.9-4.4 vs ca.2.4 MPa), and Young's modulus (ca.96-116 vs ca.60-70 MPa), with SBP-APS presenting significantly lower water wettability than the rest of the films.


Asunto(s)
Pisum sativum , Almidón , Resistencia a la Tracción , Pectinas
2.
Int J Biol Macromol ; 251: 126383, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37595713

RESUMEN

Pectin structure-miscibility-functionality relationships in starch films remain unknown. In this study, five citrus pectins (CPs) with 17 to 63 % of degree of methyl esterification (DM) and sugar beet pectin (SBP, rich in acetyl moieties and rhamnogalacturonan-I domains) were investigated for composition and structure and, further, blended with pea starch (3:1 starch-pectin weight ratio) to fabricate self-standing films. The incorporation of pectin resulted in a two- to three-fold increase in tensile strength and Young's modulus (up to 52.2 and 1837 MPa, respectively, using CP with low DM) without compromising elongation at break. Starch-SBP films presented the lowest strength among pectin films. Lower film moisture and water vapor permeability were attained with CP of high DM, or with SBP, whereas surface wettability was explained by counteracting factors affecting film compositional heterogeneity. Films made with high methoxyl CP, or with SBP, showed lower overall H-bonding (FTIR) and starch crystallinity (XRD). A DM above 57 % negatively affected the mixing and interfacial adhesion of pectin with starch, as shown by Attenuated Total Reflection-FTIR imaging. Pectins with the lowest purity, presumably with the greatest content in xyloglucan, as suggested by HPAEC, presented ~20 % higher elongation at break than the other films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...