Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 119(25): 255002, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303310

RESUMEN

We investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10^{12} W/cm^{2}) and, then, a main pulse (10^{13} W/cm^{2}) arriving 9-19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.

2.
Science ; 346(6207): 325-8, 2014 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-25324383

RESUMEN

Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154.

3.
Phys Rev Lett ; 111(9): 096802, 2013 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-24033060

RESUMEN

We report studies of the magnetospectroscopy of graphite into a new regime of high energies and ultrahigh magnetic fields which allows us to perform the first spectroscopic studies of the interlayer split-off bands, E1 and E2. These bands can be well described by an asymmetric bilayer model and have only a small interlayer band gap asymmetry. We show that all of the properties of the electrons and holes can be described by a simple relativistic behavior determined by γ0 and γ1.

4.
Rev Sci Instrum ; 84(4): 043505, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23635194

RESUMEN

The production of strongly magnetized laser plasmas, of interest for laboratory astrophysics and inertial confinement fusion studies, is presented. This is achieved by coupling a 16 kV pulse-power system. This is achieved by coupling a 16 kV pulse-power system, which generates a magnetic field by means of a split coil, with the ELFIE laser facility at Ecole Polytechnique. In order to influence the plasma dynamics in a significant manner, the system can generate, repetitively and without debris, high amplitude magnetic fields (40 T) in a manner compatible with a high-energy laser environment. A description of the system and preliminary results demonstrating the possibility to magnetically collimate plasma jets are given.

5.
Phys Rev Lett ; 110(2): 025002, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23383908

RESUMEN

The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

6.
Phys Rev Lett ; 96(1): 016406, 2006 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-16486491

RESUMEN

Near-infrared magneto-optical spectroscopy of single-walled carbon nanotubes reveals two absorption peaks with an equal strength at high magnetic fields (>55 T). We show that the peak separation is determined by the Aharonov-Bohm phase due to the tube-threading magnetic flux, which breaks the time-reversal symmetry and lifts the valley degeneracy. This field-induced symmetry breaking thus overcomes the Coulomb-induced intervalley mixing which is predicted to make the lowest exciton state optically inactive (or dark).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA