Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(5): 056001, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33605738

RESUMEN

Using electrospray ion beam deposition, we collide the complex molecule Reichardt's dye (C_{41}H_{30}NO^{+}) at low, hyperthermal translational energy (2-50 eV) with a Cu(100) surface and image the outcome at single-molecule level by scanning tunneling microscopy. We observe bond-selective reaction induced by the translational kinetic energy. The collision impulse compresses the molecule and bends specific bonds, prompting them to react selectively. This dynamics drives the system to seek thermally inaccessible reactive pathways, since the compression timescale (subpicosecond) is much shorter than the thermalization timescale (nanosecond), thereby yielding reaction products that are unobtainable thermally.

2.
Biointerphases ; 15(2): 021001, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164418

RESUMEN

Desorption/ionization induced by neutral clusters (DINeC) is used as an ultrasoft desorption/ionization method for the analysis of fragile biomolecules by means of mass spectrometry (MS). As a test molecule, the glycopeptide vancomycin was measured with DINeC-MS, and resulting mass spectra were compared to the results obtained with electrospray ionization (ESI), matrix assisted laser desorption ionization, and time-of-flight secondary ion MS. Of the desorption-based techniques, DINeC spectra show the lowest abundance of fragments comparable to ESI spectra. The soft desorption nature of DINeC was further demonstrated when applied to MS analysis of teicoplanin.


Asunto(s)
Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Péptidos/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa de Ion Secundario , Vancomicina/farmacología
3.
J Vis Exp ; (157)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176198

RESUMEN

Desorption/Ionization Induced by Neutral SO2 Clusters (DINeC) is employed as a very soft and efficient desorption/ionization technique for mass spectrometry (MS) of complex molecules and their reactions on surfaces. DINeC is based on a beam of SO2 clusters impacting on the sample surface at low cluster energy. During cluster-surface impact, some of the surface molecules are desorbed and ionized via dissolvation in the impacting cluster; as a result of this dissolvation-mediated desorption mechanism, low cluster energy is sufficient and the desorption process is extremely soft. Both surface adsorbates and molecules of which the surface is composed of can be analyzed. Clear and fragmentation-free spectra from complex molecules such as peptides and proteins are obtained. DINeC does not require any special sample preparation, in particular no matrix has to be applied. The method yields quantitative information on the composition of the samples; molecules at a surface coverage as low as 0.1 % of a monolayer can be detected. Surface reactions such as H/D exchange or thermal decomposition can be observed in real-time and the kinetics of the reactions can be deduced. Using a pulsed nozzle for cluster beam generation, DINeC can be efficiently combined with ion trap mass spectrometry. The matrix-free and soft nature of the DINeC process in combination with the MSn capabilities of the ion trap allows for very detailed and unambiguous analysis of the chemical composition of complex organic samples and organic adsorbates on surfaces.


Asunto(s)
Angiotensina II/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Medición de Intercambio de Deuterio , Cinética , Simulación de Dinámica Molecular , Proteolisis , Propiedades de Superficie , Temperatura , Vacio
4.
Biointerphases ; 13(3): 03B405, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390611

RESUMEN

Mixed peptide/lipid samples were analyzed with respect to their chemical composition by means of desorption/ionization induced by neutral SO2 clusters (DINeC) in combination with mass spectrometry (MS). Depth profiles of the mixed films indicated a segregation layer of lipid on top of all samples. The thickness of this layer as obtained by DINeC-MS was in the order of one nanometer what can be seen as an upper limit for the depth resolution of DINeC-MS. The relative amounts of the substance of peptide and lipid derived for the bulk material of mixed samples with different compositions were found to be close to the nominal values indicating a low matrix effect. Throughout the depth profiles, only intact molecular ions [M+H]+ as well as dimers of peptides and lipids were detectable, indicating the soft nature of DINeC even when used for depth profiling of biomolecular samples.


Asunto(s)
Lípidos/análisis , Espectrometría de Masas/métodos , Péptidos/análisis , Propiedades de Superficie
5.
Biointerphases ; 13(3): 03B403, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29351722

RESUMEN

Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is one of the most powerful methods to analyze biomolecules in biological tissues and cells because it provides detailed chemical structure information and chemical images with a high spatial resolution. However, in terms of quantitative analysis, there are issues such as matrix effects that often cause secondary ion intensity changes regardless of the actual concentration in a sample. For instance, the intensity of secondary ions related to peptides is generally suppressed when lipids coexist. Since the evaluation of biomolecules is crucial to understand biological phenomena, it is required to analyze peptides or lipids without matrix effects. Therefore, the mechanism of matrix effects regarding peptides and lipids in TOF-SIMS was investigated in this study. Leu-enkephalin (YGGFL, molecular weight of 555.3 Da) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, C44H84NO8P, molecular weight 785.6 Da) were employed to prepare model samples. Model samples contain different weight ratios of these two molecules. The intensity of secondary ions related to the peptide or the lipid was compared with control samples containing pure leu-enkephalin or DOPC. As a result, it is indicated that the intensity of DOPC related secondary ions is strongly enhanced by coexisting leu-enkephalin, while the intensity of leu-enkephalin related secondary ions is suppressed by coexisting DOPC especially in a low concentration range of the peptide.


Asunto(s)
Encefalina Leucina/análisis , Fosfatidilcolinas/análisis , Espectrometría de Masa de Ion Secundario/métodos
6.
Anal Chem ; 90(5): 3328-3334, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29376333

RESUMEN

Desorption/ionization induced by neutral SO2 clusters (DINeC) is used for mass spectrometry (MS) of surface-adsorbed molecules. The method is shown to be a surface-sensitive analysis tool capable of detecting molecular adsorbates in a wide range of molecular weights as well as their reactions on surfaces, which are otherwise difficult to access. Two different surface/adsorbate systems prepared by means of electrospray ion beam deposition (ES-IBD) were investigated: For the peptide angiotensin II on gold, intact molecules were desorbed from the surface when deposited by soft landing ES-IBD. By comparison to the well-controlled amount of substance deposited by ES-IBD, the sensitivity of DINeC-MS was shown to be on the order of 0.1% of a monolayer coverage, corresponding to femtomoles of analyte. Depending on deposition and sample conditions, the original state of charge of the molecules could be retrieved. Reaction of the adsorbed molecules both with surface atoms as well as with coadsorbed D2O was monitored. Rhodamine 6G was also desorbed as an intact molecule when deposited with kinetic energies below 50 eV. For higher deposition energy, fragmentation of the dye molecules was observed by means of DINeC-MS.

7.
J Phys Chem B ; 121(49): 11031-11036, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29160071

RESUMEN

The kinetics of the H/D exchange reaction in angiotensin II, hexaglycine (Gly6), Co(II)tetra(3-carboxyphenyl)porphyrin, and tetra(4-carboxyphenyl)porphyrin were followed in real time by mass spectrometry employing desorption/ionization induced by neutral SO2 clusters. The change of the isotope patterns with increasing degree of deuteration was recorded as a function of D2O exposure and the underlying H/D exchange kinetics, i.e., the dependence of the different degrees of deuteration on time, were deduced. The results were modeled by means of Monte Carlo simulations taking into account different reaction constants for the H/D exchange reaction at different functional groups. In the case of the investigated porphyrins, the rate constants were directly assigned to the functional groups involved; in the case of the peptides, reaction at the explicit functional groups and the backbone chain of the molecules could be discriminated.


Asunto(s)
Medición de Intercambio de Deuterio , Oligopéptidos/química , Porfirinas/química , Cinética , Simulación de Dinámica Molecular , Estructura Molecular , Método de Montecarlo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo
8.
Biointerphases ; 11(2): 02A316, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-26825286

RESUMEN

Oligopeptides in the presence of large amounts of salt were desorbed and ionized using desorption/ionization induced by neutral clusters (DINeC) for further analysis by means of mass spectrometry (MS). Using oligopeptides in alkali halide solutions as a model system, DINeC was shown to yield clear and fragmentation free mass spectra of the biomolecules even from environments with a large excess of salt. The results were traced back to a phase separation between salt and biomolecules during sample preparation. The ratio between alkali metal complexes [M+A](+) and bare biomolecules [M+H](+) was controlled using different preparation schemes. DINeC was applied to the products of a tryptic digest of bovine serum albumin in the presence of sodium chloride; the results of a mass fingerprint analysis did not show a major difference for the spectra with and without salt in the original solution. The metal-ion/peptide interaction was further investigated by means of tandem-MS.


Asunto(s)
Espectrometría de Masas/métodos , Oligopéptidos/análisis , Albúmina Sérica Bovina/metabolismo , Cloruro de Sodio , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...