Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bone ; 185: 117126, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777312

RESUMEN

Chronic kidney disease-induced secondary hyperparathyroidism (CKD-SHPT) heightens fracture risk through impaired mineral homeostasis and elevated levels of uremic toxins (UTs), which in turn enhance bone remodeling. Etelcalcetide (Etel), a calcium-sensing receptor (CaSR) agonist, suppresses parathyroid hormone (PTH) in hyperparathyroidism to reduce excessive bone resorption, leading to increased bone mass. However, Etel's effect on bone quality, chemical composition, and strength is not well understood. To address these gaps, we established a CKD-SHPT rat model and administered Etel at a human-equivalent dose concurrently with disease induction. The effects on bone and mineral homeostasis were compared with a CKD-SHPT (vehicle-treated group) and a control group (rats without SHPT). Compared with vehicle-treated CKD-SHPT rats, Etel treatment improved renal function, reduced circulating UT levels, improved mineral homeostasis parameters, decreased PTH levels, and prevented mineralization defects. The upregulation of mineralization-promoting genes by Etel in CKD-SHPT rats might explain its ability to prevent mineralization defects. Etel preserved both trabecular and cortical bones with attendant suppression of osteoclast function, besides increasing mineralization. Etel maintained the number of viable osteocytes to the control level, which could also contribute to its beneficial effects on bone. CKD-SHPT rats displayed increased carbonate substitution of matrix and mineral, decreased crystallinity, mineral-to-matrix ratio, and collagen maturity, and these changes were mitigated by Etel. Further, Etel treatment prevented CKD-SHPT-induced deterioration in bone strength and mechanical behavior. Based on these findings, we conclude that in CKD-SHPT rats, Etel has multiscale beneficial effects on bone that involve remodeling suppression, mineralization gene upregulation, and preservation of osteocytes.


Asunto(s)
Huesos , Calcimiméticos , Hiperparatiroidismo Secundario , Péptidos , Ratas Sprague-Dawley , Insuficiencia Renal Crónica , Animales , Hiperparatiroidismo Secundario/tratamiento farmacológico , Hiperparatiroidismo Secundario/patología , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Péptidos/farmacología , Calcimiméticos/farmacología , Calcimiméticos/uso terapéutico , Ratas , Hormona Paratiroidea/farmacología , Masculino , Calcificación Fisiológica/efectos de los fármacos , Densidad Ósea/efectos de los fármacos
2.
Calcif Tissue Int ; 114(3): 295-309, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38102510

RESUMEN

Vascular dysfunction contributes to the development of osteopenia in hypertensive patients, as decreased blood supply to bones results in tissue damage and dysfunction. The effect of anti-hypertensive medicines on bone mass in hypertensive individuals is inconclusive because of the varied mechanism of their action, and suggests that reducing blood pressure (BP) alone is insufficient to enhance bone mass in hypertension. Pentoxifylline (PTX), a hemorheological drug, improves blood flow by reducing blood viscosity and angiogenesis, also has an osteogenic effect. We hypothesized that improving vascular function is critical to increasing bone mass in hypertension. To test this, we screened various anti-hypertensive drugs for their in vitro osteogenic effect, from which timolol and hydralazine were selected. In adult female spontaneously hypertensive rats (SHRs), timolol and hydralazine did not improve vascular function and bone mass, but PTX improved both. In female SHR animals, PTX restored bone mass, strength and mineralization, up to the level of normotensive control rats. In addition, we observed lower blood vasculature in the femur of adult SHR animals, and PTX restored them. PTX also restored the bone vascular and angiogenesis parameters that had been impaired in OVX SHR compared to sham SHR. This study demonstrates the importance of vascular function in addition to increased bone mass for improving bone health as achieved by PTX without affecting BP, and suggests a promising treatment option for osteoporosis in hypertensive patients, particularly at-risk postmenopausal women.


Asunto(s)
Hipertensión , Pentoxifilina , Humanos , Ratas , Femenino , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Densidad Ósea , Timolol/farmacología , Timolol/uso terapéutico , Hipertensión/tratamiento farmacológico , Ratas Endogámicas SHR , Pentoxifilina/farmacología , Hidralazina/farmacología , Hidralazina/uso terapéutico , Presión Sanguínea
3.
Front Endocrinol (Lausanne) ; 14: 1233613, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664835

RESUMEN

Introduction: We investigated the effects of hormonal and non-hormonal oral contraceptives (OCs) on bone mass, mineralization, composition, mechanical properties, and metabolites in pubertal female SD rats. Methods: OCs were given for 3-, and 7 months at human equivalent doses. The combined hormonal contraceptive (CHC) was ethinyl estradiol and progestin, whereas the non-hormonal contraceptive (NHC) was ormeloxifene. MicroCT was used to assess bone microarchitecture and BMD. Bone formation and mineralization were assessed by static and dynamic histomorphometry. The 3-point bending test, nanoindentation, FTIR, and cyclic reference point indentation (cRPI) measured the changes in bone strength and material composition. Bone and serum metabolomes were studied to identify potential biomarkers of drug efficacy and safety and gain insight into the underlying mechanisms of action of the OCs. Results: NHC increased bone mass in the femur metaphysis after 3 months, but the gain was lost after 7 months. After 7 months, both OCs decreased bone mass and deteriorated trabecular microarchitecture in the femur metaphysis and lumbar spine. Also, both OCs decreased the mineral: matrix ratio and increased the unmineralized matrix after 7 months. After 3 months, the OCs increased carbonate: phosphate and carbonate: amide I ratios, indicating a disordered hydroxyapatite crystal structure susceptible to resorption, but these changes mostly reversed after 7 months, indicating that the early changes contributed to demineralization at the later time. In the femur 3-point bending test, CHC reduced energy storage, resilience, and ultimate stress, indicating increased susceptibility to micro-damage and fracture, while NHC only decreased energy storage. In the cyclic loading test, both OCs decreased creep indentation distance, but CHC increased the average unloading slope, implying decreased microdamage risk and improved deformation resistance by the OCs. Thus, reduced bone mineralization by the OCs appears to affect bone mechanical properties under static loading, but not its cyclic loading ability. When compared to an age-matched control, after 7 months, CHC affected 24 metabolic pathways in bone and 9 in serum, whereas NHC altered 17 in bone and none in serum. 6 metabolites were common between the serum and bone of CHC rats, suggesting their potential as biomarkers of bone health in women taking CHC. Conclusion: Both OCs have adverse effects on various skeletal parameters, with CHC having a greater negative impact on bone strength.


Asunto(s)
Calcinosis , Fracturas Óseas , Femenino , Animales , Ratas , Humanos , Lactante , Ratas Sprague-Dawley , Densidad Ósea , Metaboloma , Anticonceptivos Orales
4.
Front Endocrinol (Lausanne) ; 14: 1130003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926021

RESUMEN

Introduction: In obese humans, Coleus forskohlii root extract (CF) protects against weight gain owing to the presence of forskolin, an adenylate cyclase (AC) activator. As AC increases intracellular cyclic adenosine monophosphate (cAMP) levels in osteoblasts that has an osteogenic effect, we thus tested the skeletal effects of a standardized CF (CFE) in rats. Methods: Concentrations of forskolin and isoforskolin were measured in CFE by HPLC. CFE and forskolin (the most abundant compound present in CFE) were studied for their osteogenic efficacy in vitro by alkaline phosphatase (ALP), cAMP and cyclic guanosine monophosphate (cGMP) assays. Femur osteotomy model was used to determine the osteogenic dose of CFE. In growing rats, CFE was tested for its osteogenic effect in intact bone. In adult ovariectomized (OVX) rats, we assessed the effect of CFE on bone mass, strength and material. The effect of forskolin was assessed in vivo by measuring the expression of osteogenic genes in the calvarium of rat pups. Results: Forskolin content in CFE was 20.969%. CFE increased osteoblast differentiation and intracellular cAMP and cGMP levels in rat calvarial osteoblasts. At 25 mg/kg (half of human equivalent dose), CFE significantly enhanced calcein deposition at the osteotomy site. In growing rats, CFE promoted modeling-directed bone formation. In OVX rats, CFE maintained bone mass and microarchitecture to the level of sham-operated rats. Moreover, surface-referent bone formation in CFE treated rats was significantly increased over the OVX group and was comparable with the sham group. CFE also increased the pro-collagen type-I N-terminal propeptide: cross-linked C-telopeptide of type-I collagen (PINP : CTX-1) ratio over the OVX rats, and maintained it to the sham level. CFE treatment decreased the OVX-induced increases in the carbonate-to-phosphate, and carbonate-to-amide-I ratios. CFE also prevented the OVX-mediated decrease in mineral crystallinity. Nanoindentation parameters, including modulus and hardness, were decreased by OVX but CFE maintained these to the sham levels. Forskolin stimulated ALP, cAMP and cGMP in vitro and upregulated osteogenic genes in vivo. Conclusion: CFE, likely due to the presence of forskolin displayed a bone-conserving effect via osteogenic and anti-resorptive mechanisms resulting in the maintenance of bone mass, microarchitecture, material, and strength.


Asunto(s)
Osteogénesis , Plectranthus , Femenino , Ratas , Humanos , Animales , Colforsina/farmacología , Fosfatasa Alcalina , Ovariectomía/efectos adversos , Colágeno
5.
Front Endocrinol (Lausanne) ; 13: 951800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060935

RESUMEN

Tea (Camellia sinensis) has several reported health benefits, including that on bone health attributed to catechins of which the most abundant is epigallocatechin-3-gallate (EGCG). However, several preclinical and clinical studies raise safety concerns about EGCG in tea extract causing acute liver failure. Tea also contains kaempferol, albeit scanty, and it has hepatoprotective and osteogenic effects. Here, we utilized a novel extraction procedure of acid hydrolysis to enhance the osteogenic effect of tea extract while reducing its hepatotoxicity. The resultant extract (USKECSE) has a ~40-fold increase in kaempferol and a 2.5-fold reduction in EGCG content compared with the hydroethanolic extract (USCSE). In a female Sprague Dawley (SD) rat femur osteotomy model, USKECSE (100 mg/kg) but not USCSE promoted bone regeneration. In a rat postmenopausal osteoporosis model induced by bilateral ovariectomy (OVX), USKECSE through an osteogenic mechanism maintained bone mass, strength, and microarchitecture to the levels of ovary-intact rats with no hepatotoxic effect. After a single oral dose (100 mg/kg) of USKECSE to adult rats, kaempferol was detectable for 48 hours, suggesting its significant absorption and distribution in plasma. Peak kaempferol concentration in plasma (Cmax) was 483 ng/ml (2 µM), and at this concentration, kaempferol induces osteoblast differentiation. USKECSE had no genotoxicity, and its safety index assessed by preclinical toxicity studies, including safety pharmacology, was >20-fold. Taken together, we report a novel extraction process that enhanced the osteogenicity and concomitantly reduced hepatotoxicity of tea extract with significant kaempferol bioavailability and a favorable systemic safety profile. Based on these data, we propose assessing the USKECSE effect for postmenopausal osteoporosis treatment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Osteoporosis Posmenopáusica , Osteoporosis , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Femenino , Humanos , Quempferoles/farmacología , Quempferoles/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis Posmenopáusica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley ,
6.
Front Immunol ; 13: 875788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693779

RESUMEN

Discoveries in the last few years have emphasized the existence of an enormous breadth of communication between osteo-immune systems. These discoveries fuel novel approaches for the treatment of several bone pathologies including osteoporosis. Bifidobacterium longum (BL) is a preferred probiotic of choice due to its varied immunomodulatory potential in alleviating various inflammatory diseases. Here, we evaluate the effect of BL in an ovariectomy (ovx)-induced post-menopausal osteoporotic mouse model. Our in vitro findings reveal that BL suppresses the differentiation and functional activity of RANKL-induced osteoclastogenesis in both mouse bone marrow cells and human PBMCs. Strikingly, BL-induced Bregs were found to be significantly more efficient in suppressing osteoclastogenesis and modulating Treg-Th17 cell balance with respect to control Bregs in vitro. Our in vivo µCT and bone mechanical strength data further confirm that BL supplementation significantly enhanced bone mass and bone strength, along with improving the bone microarchitecture in ovx mice. Remarkably, alterations in frequencies of CD19+CD1dhiCD5+IL-10+ Bregs, CD4+Foxp3+IL-10+ Tregs, and CD4+Rorγt+IL-17+ Th17 cells in distinct lymphoid organs along with serum-cytokine data (enhanced anti-osteoclastogenic cytokines IFN-γ and IL-10 and reduced osteoclastogenic-cytokines IL-6, IL-17, and TNF-α) strongly support the immunomodulatory potential of BL. Altogether, our findings establish a novel osteo-protective and immunomodulatory potential of BL in augmenting bone health under osteoporotic conditions.


Asunto(s)
Linfocitos B Reguladores , Bifidobacterium longum , Animales , Citocinas , Femenino , Humanos , Interleucina-10 , Interleucina-17 , Ratones , Osteogénesis , Ovariectomía/efectos adversos
7.
Calcif Tissue Int ; 111(2): 196-210, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35451627

RESUMEN

Isovitexin (apigenin-6C-glucopyranose) is found in several food items and medicinal plants. Recently, we showed that isovitexin stimulated osteoblast differentiation through mitochondrial biogenesis and respiration that required adiponectin receptors (AdipoRs). Here, we studied whether oral isovitexin has a bone anabolic effect in vivo. At first, using a femur osteotomy model in adult mice, we compared the bone regenerative effect of isovitexin and apigenin. Whereas isovitexin-stimulated bone formation at the osteotomy site at 2.5 mg/kg and 5 mg/kg dose, apigenin had no effect. Subsequently, we tested the effect of isovitexin (5 mg/kg) in ovariectomized (OVX) osteopenic mice and observed that it restored bone mass and architecture of trabecular bones (femur metaphysis and fifth lumbar vertebra/L5) and cortical bones (femur diaphysis). Isovitexin completely restored bone strength at L5 (compressive strength) and femur (bending strength) in OVX mice. The bone anabolic effect of isovitexin was demonstrated by the increased surface referent bone formation parameters, increased expression of osteogenic genes (Runx2, bone morphogenetic protein-2 and type 1 collagen) in bones, and increased serum procollagen type 1N-terminal propeptide in OVX mice and these were on a par with teriparatide. Isovitexin inhibited bone and serum sclerostin as well as the serum type I collagen cross-linked C-telopeptide in OVX mice. Isovitexin has an oral bioavailability of 14.58%. Taken together, our data show that isovitexin had a significant oral bioavailability that translated to osteoanabolic effect equivalent to teriparatide and inhibited bone resorption, which implied a durable effect over teriparatide.


Asunto(s)
Anabolizantes , Teriparatido , Administración Oral , Anabolizantes/farmacología , Animales , Apigenina/farmacología , Densidad Ósea , Femenino , Ratones , Osteogénesis , Ovariectomía , Teriparatido/farmacología
8.
Food Funct ; 13(4): 2184-2199, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35119062

RESUMEN

Kidney Disease Improving Global Outcomes (KDIGO) 2017 Clinical Practice Guideline has recommended treatment decisions for patients with chronic kidney disease (CKD) with osteoporosis and/or high risk of fracture. Bisphosphonates, the first-line anti-osteoporosis drugs have the concern of worsening kidney functions. Moreover, despite impaired bone formation in CKD patients, teriparatide, the formation-stimulating drug is not recommended. Thus, there is an urgent need for safe and effective treatment of osteoporosis in CKD patients. Here, in CKD rats, we tested the osteoprotective effect of diosmin, a citrus-derived bioflavonoid used as a phlebotonic in chronic venous insufficiency and has a renoprotective effect. CKD was developed by 5/6th nephrectomy and diosmin at the human equivalent dose (100 mg kg-1) did not advance renal failure but reduced blood pressure to the level of sham control. Fibroblast growth factor-23 and parathyroid hormone were increased in CKD and diosmin suppressed both. CKD reduced bone mass and deteriorated the microarchitecture of trabecular bones, and diosmin maintained both to control levels. Bone formation and strength were impaired in the CKD and diosmin maintained these levels to control levels. Nanoindentation of bone showed that diosmin significantly increased tissue hardness over the control. Diosmetin, the metabolic surrogate of diosmin had comparable pharmacokinetic profiles between the control and CKD groups. Furthermore, diosmetin (50 mg kg-1) protected against CKD-induced bone loss. These data suggest that diosmin and its metabolic surrogate, diosmetin protect against CKD-induced osteopenia. Since diosmin has no renal adverse effect and protected bone mass and strength in CKD rats, we propose assessing its anti-osteoporosis effect in CKD patients.


Asunto(s)
Citrus , Diosmina/uso terapéutico , Flavonoides/uso terapéutico , Osteoporosis/prevención & control , Sustancias Protectoras/uso terapéutico , Insuficiencia Renal Crónica/complicaciones , Animales , Densidad Ósea/efectos de los fármacos , Hueso Esponjoso/efectos de los fármacos , Diosmina/farmacología , Modelos Animales de Enfermedad , Femenino , Flavonoides/farmacología , Osteoporosis/complicaciones , Fitoterapia , Sustancias Protectoras/farmacología , Ratas
9.
Eur J Pharmacol ; 913: 174634, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785210

RESUMEN

Previously, we established adiponectin receptors (AdipoRs) as osteoanabolic target. To discover small molecule agonists of AdipoRs, we studied apigenin and apigenin-6C-glucopyranose (isovitexin) that induced osteoblast differentiation. In-silico, in vitro and omics-based studies were performed. Molecular docking using the crystal structures of AdipoRs showed different interaction profiles of isovitexin and apigenin. In osteoblasts, isovitexin but not apigenin rapidly phosphorylated AMP-activated protein kinase (pAMPK) which is downstream of AdipoRs and a master regulator of cellular energy metabolism, and upregulated expression of AdipoRs. Blocking AMPK abolished the osteogenic effect of isovitexin and its effect on AdipoR expression. Isovitexin upregulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the mitochondrial biogenesis factor in osteoblasts, and the effect was blocked by AMPK inhibition. Upregulation of PGC-1α by isovitexin was accompanied by increased mitochondrial membrane proteins and mitochondrial DNA (mtDNA). Isovitexin via AdipoRs and PGC-1α induced oxidative phosphorylation (OxPhos) and ATP synthesis that resulted in osteoblast differentiation. Isovitexin had no agonistic/antagonistic activity and stimulatory/inhibitory effect in screening platforms for G protein-coupled receptors and kinases, respectively. In vivo, isovitexin upregulated AdipoRs and osteogenic genes, and increased mtDNA in rat calvarium. We conclude that isovitexin selectively via AdipoRs induced osteoblast differentiation that was fuelled by mitochondrial respiration.


Asunto(s)
Apigenina/farmacología , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Receptores de Adiponectina/agonistas , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Osteoblastos/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Cultivo Primario de Células , Receptores de Adiponectina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
10.
Biochem Biophys Rep ; 26: 101033, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34124397

RESUMEN

Adequate dietary calcium (Ca) intake is essential for bone accretion, peak bone mass (PBM) attainment, bone quality and strength during the mammalian growth period. Severe Ca deficiency during growing age results in secondary hyperparathyroidism (SHPT) and poor bone quality and strength. However, the impact of moderate Ca deficiency during rats early growth period on bone health and the reversibility with supplementing calcium later in adult life remains unclear. Female Sprague-Dawley (SD) rats (postnatal 28th day, P28) were initiated either with a moderate calcium-deficient diet (MCD, 0.25% w/w Ca) or a control diet (0.8% w/w Ca, control group) till P70. Thereafter, MCD rats were continued either with MCD diet or supplemented with calcium diet (0.8% w/w Ca, calcium supplemented group, CaS) till P150. Another group (control rats) were fed 0.8% w/w Ca containing diet from P28 till P150. MCD group, as compared to the control group, had significantly reduced serum ionized Ca and procollagen type 1 N-terminal propeptide (P1NP) at P70 while no significant change was observed in serum corrected Ca, inorganic phosphate (P), alkaline phosphatase (ALP), 25-hydroxy vitamin D [25(OH)D], intact parathyroid hormone (iPTH), and urinary C-terminal telopeptide of collagen 1 (CTX-1), Ca, and P. Femoral and tibial metaphysis in MCD rats had significantly reduced linear growth, cortical and trabecular volumetric BMD (vBMD), trabecular microarchitecture (BV/TV%, trabecular thickness, separation and number, structural model index and connectivity density), cortical thickness, and bone stiffness despite the absence of secondary hyperparathyroidism (SHPT). Continued MCD at P70-P150 results in persistence of compromised bone strength while calcium supplementation (CaS group) improved all the parameters related to bone strength and microarchitecture. Our results indicate that uncorrected moderate/subclinical calcium deficiency in growing rats can result in poor bone quality and strength despite the absence of SHPT. This finding could have relevance in children with poor calcium intake in childhood and adolescence.

11.
ACS Appl Mater Interfaces ; 13(15): 17300-17315, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33830736

RESUMEN

A technology for systemic and repeated administration of osteogenic factors for orthopedic use is an unmet medical need. Lactoferrin (∼80 kDa), present in milk, is known to support bone growth. We discovered a lactoferrin-mimetic peptide, LP2 (an 18-residue fragment from the N-terminus of the N-lobe of human lactoferrin), which self-assembles into a nano-globular assembly with a ß-sheet structure in an aqueous environment. LP2 is non-hemolytic and non-cytotoxic against human red blood cells and 3T3 fibroblasts, respectively, and appreciably stable in the human serum. LP2 through the bone morphogenetic protein-dependent mechanism stimulates osteoblast differentiation more potently than the full-length protein as well as the osteoblastic production of osteoprotegerin (an anti-osteoclastogenic factor). Consequently, daily subcutaneous administration of LP2 to rats and rabbits with osteotomy resulted in faster bone healing and stimulated bone formation in rats with a low bone mass more potently than that with teriparatide, the standard-of-care osteogenic peptide for osteoporosis. LP2 has skeletal bioavailability and is safe at the 15× osteogenic dose. Thus, LP2 is a novel peptide that can be administered systemically for the medical management of hard-to-heal fractures.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Lactoferrina/química , Nanoestructuras/química , Procedimientos Ortopédicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/farmacología , Células 3T3 , Animales , Disponibilidad Biológica , Diferenciación Celular/efectos de los fármacos , Estabilidad de Medicamentos , Humanos , Ratones , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Fragmentos de Péptidos/efectos adversos , Fragmentos de Péptidos/farmacocinética , Seguridad
12.
Eur J Pharmacol ; 899: 174015, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33711307

RESUMEN

Cyclic nucleotide phosphodiesterases (PDEs) are ubiquitously expressed enzymes that hydrolyze phosphodiester bond in the second messenger molecules including cAMP and cGMP. A wide range of drugs blocks one or more PDEs thereby preventing the inactivation of cAMP/cGMP. PDEs are differentially expressed in bone cells including osteoblasts, osteoclasts and chondrocytes. Intracellular increases in cAMP/cGMP levels in osteoblasts result in osteogenic response. Acting via the type 1 PTH receptor, teriparatide and abaloparatide increase intracellular cAMP and induce osteoanabolic effect, and many PDE inhibitors mimic this effect in preclinical studies. Since all osteoanabolic drugs are injectable and that oral drugs are considered to improve the treatment adherence and persistence, osteogenic PDE inhibitors could be a promising alternative to the currently available osteogenic therapies and directly assessed clinically in drug repurposing mode. Similar to teriparatide/abaloparatide, PDE inhibitors while stimulating osteoblast function also promote osteoclast function through stimulation of receptor activator of nuclear factor kappa-B ligand production from osteoblasts. In this review, we critically discussed the effects of PDE inhibitors in bone cells from cellular signalling to a variety of preclinical models that evaluated the bone formation mechanisms. We identified pentoxifylline (a non-selective PDE inhibitor) and rolipram (a PDE4 selective inhibitor) being the most studied inhibitors with osteogenic effect in preclinical models of bone loss at ≤ human equivalent doses, which suggest their potential for post-menopausal osteoporosis treatment through therapeutic repurposing. Subsequently, we treated pentoxifylline and rolipram as prototypical osteogenic PDEs to predict new chemotypes via the computer-aided design strategies for new drugs, based on the structural biology of PDEs.


Asunto(s)
Huesos/efectos de los fármacos , Reposicionamiento de Medicamentos , Osteogénesis/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Inhibidores de Fosfodiesterasa 5/administración & dosificación , Administración Oral , Animales , Densidad Ósea/efectos de los fármacos , Remodelación Ósea/efectos de los fármacos , Huesos/enzimología , Huesos/patología , Huesos/fisiopatología , Diseño de Fármacos , Humanos , Estructura Molecular , Osteoblastos/efectos de los fármacos , Osteoblastos/enzimología , Osteoblastos/patología , Osteoclastos/efectos de los fármacos , Osteoclastos/enzimología , Osteoclastos/patología , Osteoporosis/enzimología , Osteoporosis/patología , Osteoporosis/fisiopatología , Inhibidores de Fosfodiesterasa 4/efectos adversos , Inhibidores de Fosfodiesterasa 5/efectos adversos , Transducción de Señal , Relación Estructura-Actividad
13.
ACS Biomater Sci Eng ; 6(12): 6710-6725, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33320599

RESUMEN

Repair of critical size bone defects is a clinical challenge that usually necessitates the use of bone substitutes. For successful bone repair, the substitute should possess osteoconductive, osteoinductive, and vascularization potential, with the ability to control post-implantation infection serving as an additional advantage. With an aim to develop one such substitute, we optimized a zinc-doped hydroxyapatite (HapZ) nanocomposite decorated on reduced graphene oxide (rGO), termed as G3HapZ, and demonstrated its potential to augment the bone repair. The biocompatible composite displayed its osteoconductive potential in biomineralization studies, and its osteoinductive property was confirmed by its ability to induce mesenchymal stem cell (MSC) differentiation to osteogenic lineage assessed by in vitro mineralization (Alizarin red staining) and expression of osteogenic markers including runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP), type 1 collagen (COL1), bone morphogenic protein-2 (BMP-2), osteocalcin (OCN), and osteopontin (OPN). While the potential of G3HapZ to support vascularization was displayed by its ability to induce endothelial cell migration, attachment, and proliferation, its antimicrobial activity was confirmed using S. aureus. Biocompatibility of G3HapZ was demonstrated by its ability to induce bone regeneration and neovascularization in vivo. These results suggest that G3HapZ nanocomposites can be exploited for a range of strategies in developing orthopedic bone grafts to accelerate bone regeneration.


Asunto(s)
Células Madre Mesenquimatosas , Nanocompuestos , Óxido de Zinc , Proliferación Celular , Células Cultivadas , Durapatita , Grafito , Staphylococcus aureus , Zinc
14.
Biomed Pharmacother ; 129: 110448, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32776872

RESUMEN

In preclinical studies, fructooligosaccharide (FOS) showed beneficial skeletal effects but its effect on peak bone mass (PBM) and bone loss caused by estrogen (E2) deficiency has not been studied, and we set out to study these effects in rats. Short-chain (sc)-FOS had no effect on body weight, body composition, and energy metabolism of ovary intact (sham) and ovariectomized (OVX) rats. scFOS did not affect serum and urinary calcium and phosphorus levels, and on calcium absorption, although an increasing trend was noted in the sham group. Sham and OVX rats given scFOS had better skeletal parameters than their respective controls. scFOS treatment resulted in a higher bone anabolic response but had no effect on the catabolic parameters. scFOS increased serum levels of a short-chain fatty acid, butyrate which is known to have osteogenic effect. Our study for the first time demonstrates that in rats scFOS at the human equivalent dose enhances PBM and protects against E2 deficiency-induced bone loss by selective enhancement of new bone formation, and implicates butyrate in this process.


Asunto(s)
Remodelación Ósea , Huesos/fisiopatología , Microbioma Gastrointestinal , Oligosacáridos/administración & dosificación , Osteogénesis , Osteoporosis Posmenopáusica/prevención & control , Prebióticos , Animales , Biomarcadores/sangre , Huesos/metabolismo , Butiratos/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Osteoporosis Posmenopáusica/sangre , Osteoporosis Posmenopáusica/microbiología , Osteoporosis Posmenopáusica/fisiopatología , Ovariectomía , Ratas Sprague-Dawley
15.
Bone ; 141: 115562, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32730922

RESUMEN

Calcipenic rickets is prevalent in underprivileged children in developing countries. Calcipenic rickets resulting from dietary calcium (Ca) deficiency decreases bone mass and deteriorates bone microstructure in humans. The effect of dietary Ca replenishment (CaR) on rachitic bones in animal models depends on the amount, critical period and duration of replenishment, however, the extent of recovery in various bone parameters including bone quality remains unclear. We investigated the effect of CaR in rat skeleton after inducing calcipenic rickets. Female SD rats (postnatal 28 days/P28) were rendered calcipenic by feeding calcium deficient (CaD) diet (0.1% Ca) till P70 while control SD rats were fed Ca sufficient diet (0.8% Ca). At P70, calcipenic rats were switched to 0.8% Ca diet till P150 for one group and P210 for another group (endpoint). The CaD groups received 0.1% Ca diet throughout the study (P210). In the CaD groups, serum Ca and phosphate, and bone mineral density (BMD) were significantly decreased whereas serum alkaline phosphatase (ALP), iPTH and CTX-1 were increased compared to age-matched controls. Moreover, at the endpoint, the CaD group had reduced bone mass, surface referent bone formation parameters, tissue mineralization and strength accompanied by the increased osteoid thickness and microarchitectural decay (measured by trabecular geometric parameters) with poor crystal packing. The CaR group showed complete recovery in serum Ca, iPTH, ALP and CTX-1, and BMD, however, the bone quality parameters including bone strength, microarchitectural decay, tissue mineralization, and crystallinity were incompletely restored. Decreased surface referent bone formation and increased unmineralized bones (osteoid) indicative of osteomalacia were also observed in the CaR group at P210 compared with control despite prolonged replenishment. We conclude that a prolonged Ca repletion following the induction of calcipenic rickets in rats although shows the recovery of biochemical measures of bone metabolism and bone mass, however, the bone quality remains compromised. This suggests that a "memory" of calcipenia occurring at the early growth stage persists in the skeleton of adult rats despite a prolonged Ca replenishment.


Asunto(s)
Calcio de la Dieta , Raquitismo , Animales , Densidad Ósea , Huesos , Calcio , Femenino , Ratas , Ratas Sprague-Dawley , Raquitismo/tratamiento farmacológico
16.
Biomed Pharmacother ; 127: 110207, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32422565

RESUMEN

Anabolic therapies for osteoporosis including dietary polyphenols promote osteoblast function by influencing its energy metabolism. Among the dietary polyphenols, the beneficial skeletal effects of genistein (an isoflavone), kaempferol (a flavone), resveratrol (RES, a stilbenoid) and epigallocatechin gallate (EGCG, a catechin) have been reported in preclinical studies. We studied the action mechanism of these nutraceuticals on osteoblast bioenergetics. All stimulated differentiation of human fetal osteoblasts (hFOB). However, only EGCG and RES stimulated mitochondrial parameters including basal and maximum respiration, spare respiratory capacity and ATP production (a measure of the activity of electron transport chain/ETC). Increases in these parameters were due to increased mitochondrial biogenesis and consequent upregulation of several mitochondrial proteins including those involved in ETC. Rotenone blocked the osteogenic effect of EGCG and RES suggesting the mediatory action of mitochondria. Both compounds rapidly activated AMPK, and dorsomorphin (an AMPK inhibitor) abolished ATP production stimulated by these compounds. Moreover, EGCG and RES upregulated the mitochondrial biogenesis factor, PGC-1α which is downstream of AMPK activation, and silencing PGC-1α blocked their stimulatory effects on ATP production and hFOB differentiation. Adiponectin receptor 1 (AdipoR1) is an upstream regulator of PGC-1α, and both compounds increased the expression of AdipoR1 but not AdipoR2. Silencing AdipoR1 blocked the upregulation of EGCG/RES-induced PGC-1α and hFOB differentiation. In rat calvarium, both compounds increased AdipoR1, PGC-1α, and RunX2 (the osteoblast transcription factor) with a concomitant increase in mitochondrial copy number and ATP levels. We conclude that EGCG and RES display osteogenic effects by reprogramming osteoblastic bioenergetics by acting as the AdipoR1 agonists.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Polifenoles/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Suplementos Dietéticos , Humanos , Mitocondrias/metabolismo , Biogénesis de Organelos , Osteoblastos/citología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Adiponectina/metabolismo
17.
Bone ; 135: 115305, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32126313

RESUMEN

Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides and thereby regulate diverse cellular functions. The reports on the skeletal effects of PDE inhibitors are conflicting. Here, we screened 17 clinically used non-xanthine PDE inhibitors (selective and non-selective) using mouse calvarial osteoblasts (MCO) where the readout was osteoblast differentiation. From this screen, we identified sildenafil and vardenafil (both PDE5 inhibitors) having the least osteogenic EC50. Both drugs significantly increased vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) expressions in MCO and the nitric oxide synthase inhibitor L-NAME completely blocked VEGF expression induced by these drugs. Sunitinib, a tyrosine receptor kinase inhibitor that also blocks VEGFR2 blocked sildenafil-/vardenafil-induced osteoblast differentiation. At half of their human equivalent doses, i.e. 6.0 mg/kg sildenafil and 2.5 mg/kg vardenafil, the maximum bone marrow level of sildenafil was 32% and vardenafil was 21% of their blood levels. At these doses, both drugs enhanced bone regeneration at the femur osteotomy site and completely restored bone mass, microarchitecture, and strength in OVX mice. Furthermore, both drugs increased surface referent bone formation and serum bone formation marker (P1NP) without affecting the resorption marker (CTX-1). Both drugs increased the expression of VEGF and VEGFR2 in bones and osteoblasts and increased skeletal vascularity. Sunitinib completely blocked the bone restorative and vascular effects of sildenafil and vardenafil in OVX mice. Taken together, our study suggested that sildenafil and vardenafil at half of their adult human doses completely reversed osteopenia in OVX mice by an osteogenic mechanism that was associated with enhanced skeletal vascularity.


Asunto(s)
Inhibidores de Fosfodiesterasa 5 , Factor A de Crecimiento Endotelial Vascular , Animales , Imidazoles/farmacología , Ratones , Inhibidores de Fosfodiesterasa 5/farmacología , Piperazinas/farmacología , Citrato de Sildenafil/farmacología , Citrato de Sildenafil/uso terapéutico , Sulfonas/farmacología , Sunitinib , Triazinas/farmacología , Diclorhidrato de Vardenafil/farmacología
18.
Chem Commun (Camb) ; 56(20): 3043-3046, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32048649

RESUMEN

We demonstrate the ability of two tripeptides to promote proliferation and modulate the mechanical properties of human mesenchymal stem cells (hMSCs). Notably, Young's modulus of peptide-treated hMSCs was found to be ∼2 fold higher compared to the control group. These peptides promoted wound healing in hMSCs, without stimulating osteogenic and adipogenic differentiation, thus showing high potential in vascular tissue engineering applications.


Asunto(s)
Células Madre Mesenquimatosas/efectos de los fármacos , Oligopéptidos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Conformación Molecular , Oligopéptidos/química , Ingeniería de Tejidos
19.
Toxicol Sci ; 172(1): 167-180, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31393584

RESUMEN

Mycobacterium leprae infection causes bone lesions and osteoporosis, however, the effect of antileprosy drugs on the bone is unknown. We, therefore, set out to address it by investigating osteogenic differentiation from bone marrow (BM)-derived mesenchymal stem cells (MSCs). Out of 7 antileprosy drugs, only clofazimine (CFZ) reduced MSCs viability (IC50 ∼ 1 µM) and their osteogenic differentiation but increased adipogenic differentiation on a par with rosiglitazone, and this effect was blocked by a peroxisome proliferator-activated receptor gamma antagonist, GW9662. CFZ also decreased osteoblast viability and resulted in impaired bone regeneration in a rat femur osteotomy model at one-third human drug dose owing to increased callus adipogenesis as GW9662 prevented this effect. CFZ treatment decreased BM MSC population and homing of MSC to osteotomy site despite drug levels in BM being much less than its in vitro IC50 value. In adult rats, CFZ caused osteopenia in long bones marked by suppressed osteoblast function due to enhanced adipogenesis and increased osteoclast functions. A robust increase in marrow adipose tissue (MAT) by CFZ did not alter the hematologic parameters but likely reduced BM vascular bed leading to osteonecrosis (ON) characterized by empty osteocyte lacunae. However, CFZ had no effect on visceral fat content and was not associated with any metabolic and hematologic changes. Levels of unsaturated fatty acids in MAT were higher than saturated fatty acids and CFZ further increased the former. From these data, we conclude that CFZ has adverse skeletal effects and could be used for creating a rodent ON model devoid of extraskeletal effects.

20.
Biomed Pharmacother ; 118: 109207, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31306971

RESUMEN

A combination of diosmin and hesperidin (9:1 ratio) is marketed as a dietary supplement/nutraceutical for cardiovascular health. We studied the skeletal effect of this combination (90% diosmin and 10% hesperidin, henceforth named as DH). We showed that a) in rats with femur osteotomy, DH stimulated callus bone regeneration, b) in growing rats, DH promoted peak bone mass achievement and c) in OVX rats rendered osteopenic, DH completely restored femur trabecular bones and strength along with the increases in surface referent bone formation and serum osteogenic marker. Furthermore, DH suppressed bone resorption in OVX rats as well as in OVX rats treated with teriparatide (human parathyroid hormone 1-34) but did not affect the osteoanabolic effect of teriparatide. These data suggested that DH could prolong the anabolic window of teriparatide. To understand the mechanism of DH action, we performed pharmacokinetic studies and observed that upon its oral administration the only circulating metabolites was diosmetin (the aglycone form of diosmin) while none of the two input flavanones were detectable. Accordingly, subsequent experiments with diosmetin revealed that it was a selective estrogen receptor-ß agonist that stimulated osteoblast differentiation and suppressed sclerostin the anti-osteoblastogenic Wnt antagonist. Taken together, our study defined a positive skeletal effect of DH.


Asunto(s)
Enfermedades Óseas Metabólicas/prevención & control , Regeneración Ósea/efectos de los fármacos , Diosmina/farmacología , Hesperidina/farmacología , Osteogénesis/efectos de los fármacos , Teriparatido/farmacología , Animales , Animales Recién Nacidos , Densidad Ósea/efectos de los fármacos , Enfermedades Óseas Metabólicas/metabolismo , Suplementos Dietéticos , Diosmina/administración & dosificación , Femenino , Fémur/efectos de los fármacos , Fémur/crecimiento & desarrollo , Fémur/metabolismo , Hesperidina/administración & dosificación , Ratas Sprague-Dawley , Teriparatido/administración & dosificación , Tibia/efectos de los fármacos , Tibia/crecimiento & desarrollo , Tibia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...