Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Front Microbiol ; 15: 1342887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591029

RESUMEN

Baby chicks administered a fecal transplant from adult chickens are resistant to Salmonella colonization by competitive exclusion. A two-pronged approach was used to investigate the mechanism of this process. First, Salmonella response to an exclusive (Salmonella competitive exclusion product, Aviguard®) or permissive microbial community (chicken cecal contents from colonized birds containing 7.85 Log10Salmonella genomes/gram) was assessed ex vivo using a S. typhimurium reporter strain with fluorescent YFP and CFP gene fusions to rrn and hilA operon, respectively. Second, cecal transcriptome analysis was used to assess the cecal communities' response to Salmonella in chickens with low (≤5.85 Log10 genomes/g) or high (≥6.00 Log10 genomes/g) Salmonella colonization. The ex vivo experiment revealed a reduction in Salmonella growth and hilA expression following co-culture with the exclusive community. The exclusive community also repressed Salmonella's SPI-1 virulence genes and LPS modification, while the anti-virulence/inflammatory gene avrA was upregulated. Salmonella transcriptome analysis revealed significant metabolic disparities in Salmonella grown with the two different communities. Propanediol utilization and vitamin B12 synthesis were central to Salmonella metabolism co-cultured with either community, and mutations in propanediol and vitamin B12 metabolism altered Salmonella growth in the exclusive community. There were significant differences in the cecal community's stress response to Salmonella colonization. Cecal community transcripts indicated that antimicrobials were central to the type of stress response detected in the low Salmonella abundance community, suggesting antagonism involved in Salmonella exclusion. This study indicates complex community interactions that modulate Salmonella metabolism and pathogenic behavior and reduce growth through antagonism may be key to exclusion.

2.
PLoS One ; 19(3): e0298419, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38452024

RESUMEN

Genetic screening of pools of mutants can reveal genetic determinants involved in complex biological interactions, processes, and systems. We previously constructed two single-gene deletion resources for Salmonella enterica serovar Typhimurium 14028s in which kanamycin (KanR) and chloramphenicol (CamR) cassettes were used to replace non-essential genes. We have now used lambda-red recombination to convert the antibiotic cassettes in these resources into a tetracycline-resistant (TetR) version where each mutant contains a different 21-base barcode flanked by Illumina Read1 and Read2 primer sequences. A motility assay of a pool of the entire library, followed by a single-tube processing of the bacterial pellet, PCR, and sequencing, was used to verify the performance of the barcoded TetR collection. The new resource is useful for experiments with defined subsets of barcoded mutant strains where biological bottlenecks preclude high numbers of founder bacteria, such as in animal infections. The TetR version of the library will also facilitate the construction of triple mutants by transduction. The resource of 6197 mutants covering 3490 genes is deposited at Biological and Emerging Infections Resources (beiresources.org).


Asunto(s)
Salmonella enterica , Salmonella typhimurium , Animales , Salmonella typhimurium/genética , Serogrupo , Eliminación de Gen , Antibacterianos , Tetraciclina , Bacterias
3.
Front Plant Sci ; 15: 1302047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38352648

RESUMEN

Multiple Salmonella enterica serovars and strains have been reported to be able to persist inside the foliar tissue of lettuce (Lactuca sativa L.), potentially resisting washing steps and reaching the consumer. Intraspecies variation of the bacterial pathogen and of the plant host can both significantly affect the outcome of foliar colonization. However, current understanding of the mechanisms underlying this phenomenon is still very limited. In this study, we evaluated the foliar fitness of 14 genetically barcoded S. enterica isolates from 10 different serovars, collected from plant and animal sources. The S. enterica isolates were vacuum-infiltrated individually or in pools into the leaves of three- to four-week-old lettuce plants. To estimate the survival capacity of individual isolates, we enumerated the bacterial populations at 0- and 10- days post-inoculation (DPI) and calculated their net growth. The competition of isolates in the lettuce apoplast was assessed through the determination of the relative abundance change of barcode counts of each isolate within pools during the 10 DPI experimental period. Isolates exhibiting varying apoplast fitness phenotypes were used to evaluate their capacity to grow in metabolites extracted from the lettuce apoplast and to elicit the reactive oxygen species burst immune response. Our study revealed that strains of S. enterica can substantially differ in their ability to survive and compete in a co-inhabited lettuce leaf apoplast. The differential foliar fitness observed among these S. enterica isolates might be explained, in part, by their ability to utilize nutrients available in the apoplast and to evade plant immune responses in this niche.

4.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106073

RESUMEN

Louis Pasteur's experiments on tartaric acid laid the foundation for our understanding of molecular chirality, but major questions remain. By comparing the optical activity of naturally-occurring tartaric acid with chemically-synthesized paratartaric acid, Pasteur realized that naturally-occurring tartaric acid contained only L-tartaric acid while paratartaric acid consisted of a racemic mixture of D- and L-tartaric acid. Curiously, D-tartaric acid has no known natural source, yet several gut bacteria specifically degrade D-tartaric acid. Here, we investigated the oxidation of monosaccharides by inflammatory reactive oxygen and nitrogen species. We found that this reaction yields an array of alpha hydroxy carboxylic acids, including tartaric acid isomers. Utilization of inflammation- derived D- and L-tartaric acid enhanced colonization by Salmonella Typhimurium and E. coli in murine models of gut inflammation. Our findings suggest that byproducts of inflammatory radical metabolism, such as tartrate and other alpha hydroxy carboxylic acids, create transient nutrient niches for enteric pathogens and other potentially harmful bacteria. Furthermore, this work illustrates that inflammatory radicals generate a zoo of molecules, some of which may erroneously presumed to be xenobiotics.

5.
Infect Immun ; 91(6): e0012023, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37191509

RESUMEN

Salmonella invades host cells and replicates inside acidified, remodeled vacuoles that are exposed to reactive oxygen species (ROS) generated by the innate immune response. Oxidative products of the phagocyte NADPH oxidase mediate antimicrobial activity, in part, by collapsing the ΔpH of intracellular Salmonella. Given the role of arginine in bacterial resistance to acidic pH, we screened a library of 54 single-gene mutants in Salmonella that are each involved in, but do not entirely block, arginine metabolism. We identified several mutants that affected Salmonella virulence in mice. The triple mutant ΔargCBH, which is deficient in arginine biosynthesis, was attenuated in immunocompetent mice, but recovered virulence in phagocyte NADPH oxidase deficient Cybb-/- mice. Furthermore, ΔargCBH Salmonella was profoundly susceptible to the bacteriostatic and bactericidal effects of hydrogen peroxide. Peroxide stress led to a larger collapse of the ΔpH in ΔargCBH mutants than occurred in wild-type Salmonella. The addition of exogenous arginine rescued ΔargCBH Salmonella from peroxide-induced ΔpH collapse and killing. Combined, these observations suggest that arginine metabolism is a hitherto unknown determinant of virulence that contributes to the antioxidant defenses of Salmonella by preserving pH homeostasis. In the absence of phagocyte NADPH oxidase-produced ROS, host cell-derived l-arginine appears to satisfy the needs of intracellular Salmonella. However, under oxidative stress, Salmonella must additionally rely on de novo biosynthesis to maintain full virulence.


Asunto(s)
Macrófagos , Estrés Oxidativo , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Salmonella/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Peróxido de Hidrógeno/metabolismo
6.
J Bacteriol ; 205(1): e0026222, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36622230

RESUMEN

The adaptation of Salmonella enterica serovar Typhimurium to stress conditions involves expression of genes within the regulon of the alternative sigma factor RpoN (σ54). RpoN-dependent transcription requires an activated bacterial enhancer binding protein (bEBP) that hydrolyzes ATP to remodel the RpoN-holoenzyme-promoter complex for transcription initiation. The bEBP RtcR in S. Typhimurium strain 14028s is activated by genotoxic stress to direct RpoN-dependent expression of the RNA repair operon rsr-yrlBA-rtcBA. The molecular signal for RtcR activation is an oligoribonucleotide with a 3'-terminal 2',3'-cyclic phosphate. We show in S. Typhimurium 14028s that the molecular signal is not a direct product of nucleic acid damage, but signal generation is dependent on a RecA-controlled SOS-response pathway, specifically, induction of prophage Gifsy-1. A genome-wide mutant screen and utilization of Gifsy prophage-cured strains indicated that the nucleoid-associated protein Fis and the Gifsy-1 prophage significantly impact RtcR activation. Directed-deletion analysis and genetic mapping by transduction demonstrated that a three-gene region (STM14_3218-3220) in Gifsy-1, which is variable between S. Typhimurium strains, is required for RtcR activation in strain 14028s and that the absence of STM14_3218-3220 in the Gifsy-1 prophages of S. Typhimurium strains LT2 and 4/74, which renders these strains unable to activate RtcR during genotoxic stress, can be rescued by complementation in cis by the region encompassing STM14_3218-3220. Thus, even though RtcR and the RNA repair operon are highly conserved in Salmonella enterica serovars, RtcR-dependent expression of the RNA repair operon in S. Typhimurium is controlled by a variable region of a prophage present in only some strains. IMPORTANCE The transcriptional activator RtcR and the RNA repair proteins whose expression it regulates, RtcA and RtcB, are widely conserved in Proteobacteria. In Salmonella Typhimurium 14028s, genotoxic stress activates RtcR to direct RpoN-dependent expression of the rsr-yrlBA-rtcBA operon. This work identifies key elements of a RecA-dependent pathway that generates the signal for RtcR activation in strain 14028s. This signaling pathway requires the presence of a specific region within the prophage Gifsy-1, yet this region is absent in most other wild-type Salmonella strains. Thus, we show that the activity of a widely conserved regulatory protein can be controlled by prophages with narrow phylogenetic distributions. This work highlights an underappreciated phenomenon where bacterial physiological functions are altered due to genetic rearrangement of prophages.


Asunto(s)
Salmonella enterica , Salmonella typhimurium , Salmonella typhimurium/genética , Profagos/genética , Serogrupo , Filogenia , Respuesta SOS en Genética , Operón , Salmonella enterica/genética , Factores de Transcripción/genética , ARN , Proteínas Bacterianas/genética
7.
Macromol Biosci ; 21(7): e2000408, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33870627

RESUMEN

Antibiotics are highly successful against microbial infections. However, current challenges include rising antibiotic resistance rates and limited efficacy against intracellular pathogens. A novel form of a nanomaterial-based antimicrobial agent is investigated for efficient treatment of an intracellular Salmonella enterica sv Typhimurium infection. A known antimicrobial polysaccharide, chitosan, is engineered to be readily soluble under neutral aqueous conditions for systemic administration. The modified biologic, named acid-transforming chitosan (ATC), transforms into an insoluble, antimicrobial compound in the mildly acidic intracellular compartment. In cell culture experiments, ATC is confirmed to have antimicrobial activity against intracellular S. Typhimurium in a concentration- and pH-dependent manner, without affecting the host cells, RAW264.7 macrophages. For improved cellular uptake and pharmacokinetic/pharmacodynamic properties, ATC is further complexed with fragment DNA (fDNA), to form nano-sized spherical polyplexes. The resulting ATC/fDNA polyplexes efficiently eradicated S. Typhimurium from RAW264.7 macrophages. ATC/fDNA polyplexes may bind with microbial wall and membrane components. Consistent with this expectation, transposon insertion sequencing of a complex random mutant S. Typhimurium library incubated with ATC does not reveal specific genomic target regions of the antimicrobial. This study demonstrates the utility of a molecularly engineered nanomaterial as an efficient and safe antimicrobial agent, particularly against an intracellular pathogen.


Asunto(s)
Quitosano , Salmonella typhimurium , Antibacterianos/farmacología , Quitosano/farmacología , ADN , Macrófagos , Salmonella typhimurium/genética
8.
J Virol ; 95(11)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33731456

RESUMEN

Bacteriophages are the most abundant biological entities in the biosphere. Due to their host specificity and ability to kill bacteria rapidly, bacteriophages have many potential healthcare applications, including therapy against antibiotic-resistant bacteria. Infection by flagellotropic bacteriophages requires a properly rotating bacterial flagellar filament. The flagella-dependent phage χ (Chi) infects serovars of the pathogenic enterobacterium Salmonella enterica However, cell surface receptors and proteins involved in other stages of χ infection have not been discovered to date. We screened a multi-gene deletion library of S. enterica serovar Typhimurium by spotting mutants on soft agar plates seeded with bacteriophage χ and monitoring their ability to grow and form a swim ring, a characteristic of bacteriophage-resistant motile mutants. Those multi-gene deletion regions identified to be important for χ infectivity were further investigated by characterizing the phenotypes of corresponding single-gene deletion mutants. This way, we identified motile mutants with varying degrees of resistance to χ. Deletions in individual genes encoding the AcrABZ-TolC multi-drug efflux system drastically reduced infection by bacteriophage χ. Furthermore, an acrABtolC triple deletion strain was fully resistant to χ. Infection was severely reduced but not entirely blocked by the deletion of the gene tig encoding the molecular chaperone trigger factor. Finally, deletion in genes encoding enzymes involved in the synthesis of the antioxidants glutathione (GSH) and uric acid resulted in reduced infectivity. Our findings begin to elucidate poorly understood processes involved in later stages of flagellotropic bacteriophage infection and informs research aimed at the use of bacteriophages to combat antibiotic-resistant bacterial infections.IMPORTANCEAntimicrobial resistance is a large concern in the healthcare field. With more multi-drug resistant bacterial pathogens emerging, other techniques for eliminating bacterial infections are being explored. Among these is phage therapy, where combinations of specific phages are used to treat infections. Generally, phages utilize cell appendages and surface receptors for the initial attachment to their host. Phages that are flagellotropic are of particular interest because flagella are often important in bacterial virulence, making resistance to attachment of these phages harder to achieve without reducing virulence. This study discovered the importance of a multi-drug efflux pump for the infection of Salmonella enterica by a flagellotropic phage. In theory, if a bacterial pathogen develops phage resistance by altering expression of the efflux pump then the pathogen would simultaneously become more susceptible to the antibiotic substrates of the pump. Thus, co-administering antibiotics and flagellotropic phage may be a particularly potent antibacterial therapy.

9.
Front Microbiol ; 11: 582202, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193218

RESUMEN

Salmonella enterica subspecies I (ssp 1) is the leading cause of hospitalizations and deaths due to known bacterial foodborne pathogens in the United States and is frequently implicated in foodborne disease outbreaks associated with spices and nuts. However, the underlying mechanisms of this association have not been fully elucidated. In this study, we evaluated the influence of storage temperature (4 or 25°C), relative humidity (20 or 60%), and food surface characteristics on the attachment and survival of five individual strains representing S. enterica ssp 1 serovars Typhimurium, Montevideo, Braenderup, Mbandaka, and Enteritidis on raw in-shell black peppercorns, almonds, and hazelnuts. We observed a direct correlation between the food surface roughness and S. enterica ssp 1 attachment, and detected significant inter-strain difference in survival on the shell surface under various storage conditions. A combination of low relative humidity (20%) and ambient storage temperature (25°C) resulted in the most significant reduction of S. enterica on shell surfaces (p < 0.05). To identify genes potentially associated with S. enterica attachment and survival on shell surfaces, we inoculated a library of 120,000 random transposon insertion mutants of an S. Enteritidis strain on almond shells, and screened for mutant survival after 1, 3, 7, and 14 days of storage at 20% relative humidity and 25°C. Mutants in 155 S. Enteritidis genes which are involved in carbohydrate metabolic pathways, aerobic and anaerobic respiration, inner membrane transport, and glutamine synthesis displayed significant selection on almond shells (p < 0.05). Findings of this study suggest that various food attributes, environmental factors, and an unexpectedly complex metabolic and regulatory network in S. enterica ssp 1 collectively contribute to the bacterial attachment and survival on low moisture shell surface, providing new data for the future development of knowledge-based intervention strategies.

10.
Front Microbiol ; 11: 726, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499760

RESUMEN

Salmonella enterica is the leading foodborne pathogen associated with outbreaks involving low-moisture foods (LMFs). However, the genes involved in Salmonella's long-term survival on LMFs remain poorly characterized. In this study, in-shell pistachios were inoculated with Tn5-based mutant libraries of S. Enteritidis P125109, S. Typhimurium 14028s, and S. Newport C4.2 at approximate 108 CFU/g and stored at 25°C. Transposon sequencing analysis (Tn-seq) was then employed to determine the relative abundance of each Tn5 insertion site immediately after inoculation (T0), after drying (T1), and at 120 days (T120). In S. Enteritidis, S. Typhimurium, and S. Newport mutant libraries, the relative abundance of 51, 80, and 101 Tn5 insertion sites, respectively, was significantly lower at T1 compared to T0, while in libraries of S. Enteritidis and S. Typhimurium the relative abundance of 42 and 68 Tn5 insertion sites, respectively, was significantly lower at T120 compared to T1. Tn5 insertion sites with reduced relative abundance in this competition assay were localized in DNA repair, lipopolysaccharide biosynthesis and stringent response genes. Twelve genes among those under strong negative selection in the competition assay were selected for further study. Whole gene deletion mutants in ten of these genes, sspA, barA, uvrB, damX, rfbD, uvrY, lrhA, yifE, rbsR, and ompR, were impaired for individual survival on pistachios. The findings highlight the value of combined mutagenesis and sequencing to identify novel genes important for the survival of Salmonella in low-moisture foods.

11.
Cell Host Microbe ; 27(6): 922-936.e6, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32416061

RESUMEN

Initial enteropathogen growth in the microbiota-colonized gut is poorly understood. Salmonella Typhimurium is metabolically adaptable and can harvest energy by anaerobic respiration using microbiota-derived hydrogen (H2) as an electron donor and fumarate as an electron acceptor. As fumarate is scarce in the gut, the source of this electron acceptor is unclear. Here, transposon sequencing analysis along the colonization trajectory of S. Typhimurium implicates the C4-dicarboxylate antiporter DcuABC in early murine gut colonization. In competitive colonization assays, DcuABC and enzymes that convert the C4-dicarboxylates aspartate and malate into fumarate (AspA, FumABC), are required for fumarate/H2-dependent initial growth. Thus, S. Typhimurium obtains fumarate by DcuABC-mediated import and conversion of L-malate and L-aspartate. Fumarate reduction yields succinate, which is exported by DcuABC in exchange for L-aspartate and L-malate. This cycle allows S. Typhimurium to harvest energy by H2/fumarate respiration in the microbiota-colonized gut. This strategy may also be relevant for commensal E. coli diminishing the S. Typhimurium infection.


Asunto(s)
Ácido Aspártico/metabolismo , Fumaratos/metabolismo , Microbioma Gastrointestinal/fisiología , Malatos/metabolismo , Salmonella/metabolismo , Administración Oral , Animales , Ácido Aspártico/administración & dosificación , Proteínas Bacterianas/metabolismo , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Escherichia coli/metabolismo , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Intestinos/microbiología , Malatos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis , ARN Ribosómico 16S/genética , Salmonella/genética , Salmonella/crecimiento & desarrollo , Salmonella typhimurium , Análisis de Secuencia de ADN , Ácido Succínico
12.
Nat Commun ; 11(1): 1783, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286292

RESUMEN

The microbial adaptations to the respiratory burst remain poorly understood, and establishing how the NADPH oxidase (NOX2) kills microbes has proven elusive. Here we demonstrate that NOX2 collapses the ΔpH of intracellular Salmonella Typhimurium. The depolarization experienced by Salmonella undergoing oxidative stress impairs folding of periplasmic proteins. Depolarization in respiring Salmonella mediates intense bactericidal activity of reactive oxygen species (ROS). Salmonella adapts to the challenges oxidative stress imposes on membrane bioenergetics by shifting redox balance to glycolysis and fermentation, thereby diminishing electron flow through the membrane, meeting energetic requirements and anaplerotically generating tricarboxylic acid intermediates. By diverting electrons away from the respiratory chain, glycolysis also enables thiol/disulfide exchange-mediated folding of bacterial cell envelope proteins during periods of oxidative stress. Thus, primordial metabolic pathways, already present in bacteria before aerobic respiration evolved, offer a solution to the stress ROS exert on molecular targets at the bacterial cell envelope.


Asunto(s)
Glucólisis/fisiología , NADPH Oxidasas/metabolismo , Estrés Oxidativo/fisiología , Salmonella typhimurium/enzimología , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fermentación/genética , Fermentación/fisiología , Glucólisis/genética , NADPH Oxidasas/genética , Oxidación-Reducción , Estrés Oxidativo/genética , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhimurium/genética
13.
mBio ; 11(1)2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098823

RESUMEN

Guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), together named (p)ppGpp, regulate diverse aspects of Salmonella pathogenesis, including synthesis of nutrients, resistance to inflammatory mediators, and expression of secretion systems. In Salmonella, these nucleotide alarmones are generated by the synthetase activities of RelA and SpoT proteins. In addition, the (p)ppGpp hydrolase activity of the bifunctional SpoT protein is essential to preserve cell viability. The contribution of SpoT to physiology and pathogenesis has proven elusive in organisms such as Salmonella, because the hydrolytic activity of this RelA and SpoT homologue (RSH) is vital to prevent inhibitory effects of (p)ppGpp produced by a functional RelA. Here, we describe the biochemical and functional characterization of a spoT-Δctd mutant Salmonella strain encoding a SpoT protein that lacks the C-terminal regulatory elements collectively referred to as "ctd." Salmonella expressing the spoT-Δctd variant hydrolyzes (p)ppGpp with similar kinetics to those of wild-type bacteria, but it is defective at synthesizing (p)ppGpp in response to acidic pH. Salmonella spoT-Δctd mutants have virtually normal adaptations to nutritional, nitrosative, and oxidative stresses, but poorly induce metal cation uptake systems and Salmonella pathogenicity island 2 (SPI-2) genes in response to the acidic pH of the phagosome. Importantly, spoT-Δctd mutant Salmonella replicates poorly intracellularly and is attenuated in a murine model of acute salmonellosis. Collectively, these investigations indicate that (p)ppGpp synthesized by SpoT serves a unique function in the adaptation of Salmonella to the intracellular environment of host phagocytes that cannot be compensated by the presence of a functional RelA.IMPORTANCE Pathogenic bacteria experience nutritional challenges during colonization and infection of mammalian hosts. Binding of the alarmone nucleotide guanosine tetraphosphate (ppGpp) to RNA polymerase coordinates metabolic adaptations and virulence gene transcription, increasing the fitness of diverse Gram-positive and Gram-negative bacteria as well as that of actinomycetes. Gammaproteobacteria such as Salmonella synthesize ppGpp by the combined activities of the closely related RelA and SpoT synthetases. Due to its profound inhibitory effects on growth, ppGpp must be removed; in Salmonella, this process is catalyzed by the vital hydrolytic activity of the bifunctional SpoT protein. Because SpoT hydrolase activity is essential in cells expressing a functional RelA, we have a very limited understanding of unique roles these two synthetases may assume during interactions of bacterial pathogens with their hosts. We describe here a SpoT truncation mutant that lacks ppGpp synthetase activity and all C-terminal regulatory domains but retains excellent hydrolase activity. Our studies of this mutant reveal that SpoT uniquely senses the acidification of phagosomes, inducing virulence programs that increase Salmonella fitness in an acute model of infection. Our investigations indicate that the coexistence of RelA/SpoT homologues in a bacterial cell is driven by the need to mount a stringent response to a myriad of physiological and host-specific signatures.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ligasas/metabolismo , Fagosomas/metabolismo , Pirofosfatasas/metabolismo , Salmonella/metabolismo , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Guanosina Pentafosfato/genética , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Inmunidad Innata , Ligasas/genética , Ratones , Pirofosfatasas/genética , Salmonella/genética , Factor de Transcripción ReIA/metabolismo , Virulencia/genética
14.
Front Microbiol ; 11: 6, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32038592

RESUMEN

Contamination of edible produce leaves with human bacterial pathogens has been associated with serious disease outbreaks and has become a major public health concern affecting all aspects of the market, from farmers to consumers. While pathogen populations residing on the surface of ready-to-eat produce can be potentially removed through thorough washing, there is no disinfection technology available that effectively eliminates internal bacterial populations. By screening 303 multi-gene deletion (MGD) mutants of Salmonella enterica serovar Typhimurium (STm) 14028s, we were able to identify ten genomic regions that play a role in opening the stomatal pore of lettuce leaves. The major metabolic functions of the deleted regions are associated with sensing the environment, bacterium movement, transport through the bacterial membrane, and biosynthesis of surface appendages. Interestingly, at 21 days post inoculation, seven of these mutants showed increased population titers inside the leaf, two mutants showed similar titers as the wild type bacterium, whereas one mutant with a large deletion that includes the Salmonella pathogenicity island 2 (SPI-2) showed significantly impaired persistence in the leaf apoplast. These findings suggest that not all the genomic regions required for initiation of leaf colonization (i.e., epiphytic behavior and tissue penetration) are essential for continuing bacterial survival as an endophyte. We also observed that mutants lacking either SPI-1 (Mut3) or SPI-2 (Mut9) induce callose deposition levels comparable to those of the wild type STm 14028s; therefore, these islands do not seem to affect this lettuce defense mechanism. However, the growth of Mut9, but not Mut3, was significantly impaired in the leaf apoplastic wash fluid (AWF) suggesting that the STm persistence in the apoplast may be linked to nutrient acquisition capabilities or overall bacterial fitness in this niche, which are dependent on the gene(s) deleted in the Mut9 strain. The genetic basis of STm colonization of leaves investigated in this study provides a foundation from which to develop mitigation tactics to enhance food safety.

16.
PLoS One ; 14(2): e0211584, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30716090

RESUMEN

The Cpx-envelope stress system regulates the expression of virulence factors in many Gram-negative pathogens. In Salmonella enterica serovar Typhimurium deletion of the sensor kinase CpxA but not of the response regulator CpxR results in the down regulation of the key regulator for invasion, HilA encoded by the Salmonella pathogenicity island 1 (SPI-1). Here, we provide evidence that cpxA deletion interferes with dephosphorylation of CpxR resulting in increased levels of active CpxR and consequently in misregulation of target genes. 14 potential operons were identified to be under direct control of CpxR. These include the virulence determinants ecotin, the omptin PgtE, and the SPI-2 regulator SsrB. The Tat-system and the PocR regulator that together promote anaerobic respiration of tetrathionate on 1,2-propanediol are also under direct CpxR control. Notably, 1,2-propanediol represses hilA expression. Thus, our work demonstrates for the first time the involvement of the Cpx system in a complex network mediating metabolism and virulence function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidad , Anaerobiosis , Regulación Bacteriana de la Expresión Génica , Genómica , Mutación , Fosforilación , Salmonella typhi/genética , Virulencia
17.
J Exp Med ; 216(4): 757-771, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804000

RESUMEN

Salmonella species are among the world's most prevalent pathogens. Because the cell wall interfaces with the host, we designed a lipidomics approach to reveal pathogen-specific cell wall compounds. Among the molecules differentially expressed between Salmonella Paratyphi and S. Typhi, we focused on lipids that are enriched in S. Typhi, because it causes typhoid fever. We discovered a previously unknown family of trehalose phospholipids, 6,6'-diphosphatidyltrehalose (diPT) and 6-phosphatidyltrehalose (PT). Cardiolipin synthase B (ClsB) is essential for PT and diPT but not for cardiolipin biosynthesis. Chemotyping outperformed clsB homology analysis in evaluating synthesis of diPT. DiPT is restricted to a subset of Gram-negative bacteria: large amounts are produced by S. Typhi, lower amounts by other pathogens, and variable amounts by Escherichia coli strains. DiPT activates Mincle, a macrophage activating receptor that also recognizes mycobacterial cord factor (6,6'-trehalose dimycolate). Thus, Gram-negative bacteria show convergent function with mycobacteria. Overall, we discovered a previously unknown immunostimulant that is selectively expressed among medically important bacterial species.


Asunto(s)
Mycobacterium/metabolismo , Fosfolípidos/metabolismo , Salmonella typhi/metabolismo , Trehalosa/metabolismo , Animales , Membrana Celular , Escherichia coli/metabolismo , Heces/microbiología , Humanos , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Filogenia , Receptores Inmunológicos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Fiebre Tifoidea/metabolismo , Fiebre Tifoidea/microbiología
18.
Nat Commun ; 10(1): 197, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643129

RESUMEN

Salmonella Typhimurium (S. Tm) establishes systemic infection in susceptible hosts by evading the innate immune response and replicating within host phagocytes. Here, we sought to identify inhibitors of intracellular S. Tm replication by conducting parallel chemical screens against S. Tm growing in macrophage-mimicking media and within macrophages. We identify several compounds that inhibit Salmonella growth in the intracellular environment and in acidic, ion-limited media. We report on the antimicrobial activity of the psychoactive drug metergoline, which is specific against intracellular S. Tm. Screening an S. Tm deletion library in the presence of metergoline reveals hypersensitization of outer membrane mutants to metergoline activity. Metergoline disrupts the proton motive force at the bacterial cytoplasmic membrane and extends animal survival during a systemic S. Tm infection. This work highlights the predictive nature of intracellular screens for in vivo efficacy, and identifies metergoline as a novel antimicrobial active against Salmonella.


Asunto(s)
Antibacterianos/farmacología , Macrófagos/microbiología , Metergolina/farmacología , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium/efectos de los fármacos , Animales , Antibacterianos/uso terapéutico , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Eliminación de Gen , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Macrófagos/inmunología , Macrófagos/ultraestructura , Metergolina/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Células RAW 264.7 , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/mortalidad , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Resultado del Tratamiento
19.
PLoS Pathog ; 14(10): e1007388, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365536

RESUMEN

The metabolic processes that enable the replication of intracellular Salmonella under nitrosative stress conditions engendered in the innate response of macrophages are poorly understood. A screen of Salmonella transposon mutants identified the ABC-type high-affinity zinc uptake system ZnuABC as a critical determinant of the adaptation of Salmonella to the nitrosative stress generated by the enzymatic activity of inducible nitric oxide (NO) synthase of mononuclear phagocytic cells. NO limits the virulence of a znuB mutant in an acute murine model of salmonellosis. The ZnuABC transporter is crucial for the glycolytic function of fructose bisphosphate aldolase, thereby fueling growth of Salmonella during nitrosative stress produced in the innate response of macrophages. Our investigations demonstrate that glycolysis mediates resistance of Salmonella to the antimicrobial activity of NO produced in an acute model of infection. The ATP synthesized by substrate-level phosphorylation at the payoff phase of glycolysis and acetate fermentation powers the replication of Salmonella experiencing high levels of nitrosative stress. In contrast, despite its high potential for ATP synthesis, oxidative phosphorylation is a major target of inhibition by NO and contributes little to the antinitrosative defenses of intracellular Salmonella. Our investigations have uncovered a previously unsuspected conjunction between zinc homeostasis, glucose metabolism and cellular energetics in the adaptation of intracellular Salmonella to the reactive nitrogen species synthesized in the innate host response.


Asunto(s)
Inmunidad Innata/inmunología , Macrófagos/inmunología , Óxido Nítrico/metabolismo , Infecciones por Salmonella/microbiología , Salmonella/crecimiento & desarrollo , Zinc/farmacología , Animales , Homeostasis , Inmunidad Innata/efectos de los fármacos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Estrés Nitrosativo/efectos de los fármacos , Fosforilación , Salmonella/efectos de los fármacos , Salmonella/inmunología , Infecciones por Salmonella/tratamiento farmacológico , Infecciones por Salmonella/inmunología
20.
Front Microbiol ; 9: 877, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867794

RESUMEN

Outbreaks of salmonellosis linked to the consumption of vegetables have been disproportionately associated with strains of serovar Newport. We tested the hypothesis that strains of sv. Newport have evolved unique adaptations to persistence in plants that are not shared by strains of other Salmonella serovars. We used a genome-wide mutant screen to compare growth in tomato fruit of a sv. Newport strain from an outbreak traced to tomatoes, and a sv. Typhimurium strain from animals. Most genes in the sv. Newport strain that were selected during persistence in tomatoes were shared with, and similarly selected in, the sv. Typhimurium strain. Many of their functions are linked to central metabolism, including amino acid biosynthetic pathways, iron acquisition, and maintenance of cell structure. One exception was a greater need for the core genes involved in purine metabolism in sv. Typhimurium than in sv. Newport. We discovered a gene, papA, that was unique to sv. Newport and contributed to the strain's fitness in tomatoes. The papA gene was present in about 25% of sv. Newport Group III genomes and generally absent from other Salmonella genomes. Homologs of papA were detected in the genomes of Pantoea, Dickeya, and Pectobacterium, members of the Enterobacteriacea family that can colonize both plants and animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...