Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7678, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37996438

RESUMEN

Cellular matter can be organized into compositionally distinct biomolecular condensates. For example, in Ashbya gossypii, the RNA-binding protein Whi3 forms distinct condensates with different RNA molecules. Using criteria derived from a physical framework for explaining how compositionally distinct condensates can form spontaneously via thermodynamic considerations, we find that condensates in vitro form mainly via heterotypic interactions in binary mixtures of Whi3 and RNA. However, within these condensates, RNA molecules become dynamically arrested. As a result, in ternary systems, simultaneous additions of Whi3 and pairs of distinct RNA molecules lead to well-mixed condensates, whereas delayed addition of an RNA component results in compositional distinctness. Therefore, compositional identities of condensates can be achieved via dynamical control, being driven, at least partially, by the dynamical arrest of RNA molecules. Finally, we show that synchronizing the production of different RNAs leads to more well-mixed, as opposed to compositionally distinct condensates in vivo.


Asunto(s)
Condensados Biomoleculares , ARN , Termodinámica
2.
Protein Sci ; 32(11): e4787, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37743569

RESUMEN

Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" important for regulation. For the mitochondrial fission dynamin, dynamin-related protein 1, a regulatory role for the variable domain (VD) is demonstrated by gain- and loss-of-function mutations, yet the basis for this is unclear. Here, the isolated VD is shown to be intrinsically disordered and undergo a cooperative transition in the stabilizing osmolyte trimethylamine N-oxide. However, the osmolyte-induced state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, which appears to promote phase separation. Since dynamin-related protein 1 is found assembled into discrete punctate structures on the mitochondrial surface, the inference from the present work is that these structures might arise from a condensed state involving the VD that may enable rapid tuning of mechanoenzyme assembly necessary for fission.


Asunto(s)
Cardiolipinas , GTP Fosfohidrolasas , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Cardiolipinas/metabolismo , Estructura Terciaria de Proteína , Dinaminas/química , Mitocondrias/metabolismo
3.
bioRxiv ; 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37398258

RESUMEN

Dynamins are an essential superfamily of mechanoenzymes that remodel membranes and often contain a "variable domain" (VD) important for regulation. For the mitochondrial fission dynamin, Drp1, a regulatory role for the VD is demonstrated by mutations that can elongate, or fragment, mitochondria. How the VD encodes inhibitory and stimulatory activity is unclear. Here, isolated VD is shown to be intrinsically disordered (ID) yet undergoes a cooperative transition in the stabilizing osmolyte TMAO. However, the TMAO stabilized state is not folded and surprisingly appears as a condensed state. Other co-solutes including known molecular crowder Ficoll PM 70, also induce a condensed state. Fluorescence recovery after photobleaching experiments reveal this state to be liquid-like indicating the VD undergoes a liquid-liquid phase separation under crowding conditions. These crowding conditions also enhance binding to cardiolipin, a mitochondrial lipid, raising the possibility that phase separation may enable rapid tuning of Drp1 assembly necessary for fission.

4.
bioRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-37066350

RESUMEN

Biomolecular condensates are viscoelastic materials. Here, we report results from investigations into molecular-scale determinants of sequence-encoded and age-dependent viscoelasticity of condensates formed by prion-like low-complexity domains (PLCDs). The terminally viscous forms of PLCD condensates are Maxwell fluids. Measured viscoelastic moduli of these condensates are reproducible using a Rouse-Zimm model that accounts for the network-like organization engendered by reversible physical crosslinks among PLCDs in the dense phase. Measurements and computations show that the strengths of aromatic inter-sticker interactions determine the sequence-specific amplitudes of elastic and viscous moduli as well as the timescales over which elastic properties dominate. PLCD condensates also undergo physical aging on sequence-specific timescales. This is driven by mutations to spacer residues that weaken the metastability of terminally viscous phases. The aging of PLCD condensates is accompanied by disorder-to-order transitions, leading to the formation of non-fibrillar, beta-sheet-containing, semi-crystalline, terminally elastic, Kelvin-Voigt solids. Our results suggest that sequence grammars, which refer to the identities of stickers versus spacers in PLCDs, have evolved to afford control over the metastabilities of terminally viscous fluid phases of condensates. This selection can, in some cases, render barriers for conversion from metastable fluids to globally stable solids to be insurmountable on functionally relevant timescales.

5.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798397

RESUMEN

Macromolecular phase separation underlies the regulated formation and dissolution of biomolecular condensates. What is unclear is how condensates of distinct and shared macromolecular compositions form and coexist within cellular milieus. Here, we use theory and computation to establish thermodynamic criteria that must be satisfied to achieve compositionally distinct condensates. We applied these criteria to an archetypal ribonucleoprotein condensate and discovered that demixing into distinct protein-RNA condensates cannot be the result of purely thermodynamic considerations. Instead, demixed, compositionally distinct condensates arise due to asynchronies in timescales that emerge from differences in long-lived protein-RNA and RNA-RNA crosslinks. This type of dynamical control is also found to be active in live cells whereby asynchronous production of molecules is required for realizing demixed protein-RNA condensates. We find that interactions that exert dynamical control provide a versatile and generalizable way to influence the compositions of coexisting condensates in live cells.

6.
Chemphyschem ; 24(7): e202200746, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599672

RESUMEN

The single alpha helix (SAH) is a recurring motif in biology. The consensus sequence has a di-block architecture that includes repeats of four consecutive glutamate residues followed by four consecutive lysine residues. Measurements show that the overall helicity of sequences with consensus E4 K4 repeats is insensitive to a wide range of pH values. Here, we use the recently introduced q-canonical ensemble, which allows us to decouple measurements of charge state and conformation, to explain the observed insensitivity of SAH helicity to pH. We couple the outputs from separate measurements of charge and conformation with atomistic simulations to derive residue-specific quantifications of preferences for being in an alpha helix and for the ionizable residues to be charged vs. uncharged. We find a clear preference for accommodating uncharged Glu residues within internal positions of SAH-forming sequences. The stabilities of alpha helical conformations increase with the number of E4 K4 repeats and so do the numbers of accessible charge states that are compatible with forming conformations of high helical content. There is conformational buffering whereby charge state heterogeneity buffers against large-scale conformational changes thus making the overall helicity insensitive to large changes in pH. Further, the results clearly argue against a single, rod-like alpha helical conformation being the only or even dominant conformation in the ensembles of so-called SAH sequences.


Asunto(s)
Ácido Glutámico , Lisina , Conformación Proteica en Hélice alfa , Conformación Proteica
7.
bioRxiv ; 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36711465

RESUMEN

Macromolecular phase separation underlies the regulated formation and dissolution of biomolecular condensates. What is unclear is how condensates of distinct and shared macromolecular compositions form and coexist within cellular milieus. Here, we use theory and computation to establish thermodynamic criteria that must be satisfied to achieve compositionally distinct condensates. We applied these criteria to an archetypal ribonucleoprotein condensate and discovered that demixing into distinct protein-RNA condensates cannot be the result of purely thermodynamic considerations. Instead, demixed, compositionally distinct condensates arise due to asynchronies in timescales that emerge from differences in long-lived protein-RNA and RNA-RNA crosslinks. This type of dynamical control is also found to be active in live cells whereby asynchronous production of molecules is required for realizing demixed protein-RNA condensates. We find that interactions that exert dynamical control provide a versatile and generalizable way to influence the compositions of coexisting condensates in live cells.

8.
Biomolecules ; 12(10)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291688

RESUMEN

Over the last decade, evidence has accumulated to suggest that numerous instances of cellular compartmentalization can be explained by the phenomenon of phase separation. This is a process by which a macromolecular solution separates spontaneously into dense and dilute coexisting phases. Semi-quantitative, in vitro approaches for measuring phase boundaries have proven very useful in determining some key features of biomolecular condensates, but these methods often lack the precision necessary for generating quantitative models. Therefore, there is a clear need for techniques that allow quantitation of coexisting dilute and dense phase concentrations of phase-separating biomolecules, especially in systems with more than one type of macromolecule. Here, we report the design and deployment of analytical High-Performance Liquid Chromatography (HPLC) for in vitro separation and quantification of distinct biomolecules that allows us to measure dilute and dense phase concentrations needed to reconstruct coexistence curves in multicomponent mixtures. This approach is label-free, detects lower amounts of material than is accessible with classic UV-spectrophotometers, is applicable to a broad range of macromolecules of interest, is a semi-high-throughput technique, and if needed, the macromolecules can be recovered for further use. The approach promises to provide quantitative insights into the balance of homotypic and heterotypic interactions in multicomponent phase-separating systems.


Asunto(s)
Cromatografía Líquida de Alta Presión , Sustancias Macromoleculares
9.
Proc Natl Acad Sci U S A ; 119(13): e2120799119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35333653

RESUMEN

SignificanceA large subclass of biomolecular condensates are linked to RNA regulation and are known as ribonucleoprotein (RNP) bodies. While extensive work has identified driving forces for biomolecular condensate formation, relatively little is known about forces that oppose assembly. Here, using a fungal RNP protein, Whi3, we show that a portion of its intrinsically disordered, glutamine-rich region modulates phase separation by forming transient alpha helical structures that promote the assembly of dilute phase oligomers. These oligomers detour Whi3 proteins from condensates, thereby impacting the driving forces for phase separation, the protein-to-RNA ratio in condensates, and the material properties of condensates. Our findings show how nanoscale conformational and oligomerization equilibria can influence mesoscale phase equilibria.


Asunto(s)
ARN , Ribonucleoproteínas , Conformación Molecular , ARN/metabolismo , Ribonucleoproteínas/metabolismo
10.
Biophys J ; 120(24): 5438-5453, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34826385

RESUMEN

Ionizable residues can release and take up protons and this has an influence on protein structure and function. The extent of protonation is linked to the overall pH of the solution and the local environments of ionizable residues. Binding or unbinding of a single proton generates a distinct charge microstate defined by a specific pattern of charges. Accordingly, the overall partition function is a sum over all charge microstates and Boltzmann weights of all conformations associated with each of the charge microstates. This ensemble-of-ensembles description recast as a q-canonical ensemble allows us to analyze and interpret potentiometric titrations that provide information regarding net charge as a function of pH. In the q-canonical ensemble, charge microstates are grouped into mesostates where each mesostate is a collection of microstates of the same net charge. Here, we show that leveraging the structure of the q-canonical ensemble allows us to decouple contributions of net proton binding and release from proton arrangement and conformational considerations. Through application of the q-canonical formalism to analyze potentiometric measurements of net charge in proteins with repetitive patterns of Lys and Glu residues, we determine the underlying mesostate pKa values and, more importantly, we estimate relative mesostate populations as a function of pH. This is a strength of using the q-canonical approach that cannot be replicated using purely site-specific analyses. Overall, our work shows how measurements of charge equilibria, decoupled from measurements of conformational equilibria, and analyzed using the framework of the q-canonical ensemble, provide protein-specific quantitative descriptions of pH-dependent populations of mesostates. This method is of direct relevance for measuring and understanding how different charge states contribute to conformational, binding, and phase equilibria of proteins.


Asunto(s)
Proteínas , Protones , Concentración de Iones de Hidrógeno , Conformación Proteica , Proteínas/química
11.
Biochemistry ; 60(43): 3213-3222, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34648275

RESUMEN

Glycine-rich regions feature prominently in intrinsically disordered regions (IDRs) of proteins that drive phase separation and the regulated formation of membraneless biomolecular condensates. Interestingly, the Gly-rich IDRs seldom feature poly-Gly tracts. The protein fused in sarcoma (FUS) is an exception. This protein includes two 10-residue poly-Gly tracts within the prion-like domain (PLD) and at the interface between the PLD and the RNA binding domain. Poly-Gly tracts are known to be highly insoluble, being potent drivers of self-assembly into solid-like fibrils. Given that the internal concentrations of FUS and FUS-like molecules cross the high micromolar and even millimolar range within condensates, we reasoned that the intrinsic insolubility of poly-Gly tracts might be germane to emergent fluid-to-solid transitions within condensates. To assess this possibility, we characterized the concentration-dependent self-assembly for three non-overlapping 25-residue Gly-rich peptides derived from FUS. Two of the three peptides feature 10-residue poly-Gly tracts. These peptides form either long fibrils based on twisted ribbon-like structures or self-supporting gels based on physical cross-links of fibrils. Conversely, the peptide with similar Gly contents but lacking a poly-Gly tract does not form fibrils or gels. Instead, it remains soluble across a wide range of concentrations. Our findings highlight the ability of poly-Gly tracts within IDRs that drive phase separation to undergo self-assembly. We propose that these tracts are likely to contribute to nucleation of fibrillar solids within dense condensates formed by FUS.


Asunto(s)
Glicina/metabolismo , Péptidos/química , Proteína FUS de Unión a ARN/metabolismo , Condensados Biomoleculares/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Microscopía Electrónica de Transmisión/métodos , Péptidos/metabolismo , Agregado de Proteínas/genética , Agregado de Proteínas/fisiología , Dominios Proteicos/fisiología , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/fisiología , Espectroscopía Infrarroja por Transformada de Fourier/métodos
12.
J Mol Biol ; 433(12): 166848, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-33539877

RESUMEN

The combination of phase separation and disorder-to-order transitions can give rise to ordered, semi-crystalline fibrillar assemblies that underlie prion phenomena namely, the non-Mendelian transfer of information across cells. Recently, a method known as Distributed Amphifluoric Förster Resonance Energy Transfer (DAmFRET) was developed to study the convolution of phase separation and disorder-to-order transitions in live cells. In this assay, a protein of interest is expressed to a broad range of concentrations and the acquisition of local density and order, measured by changes in FRET, is used to map phase transitions for different proteins. The high-throughput nature of this assay affords the promise of uncovering sequence-to-phase behavior relationships in live cells. Here, we report the development of a supervised method to obtain automated and accurate classifications of phase transitions quantified using the DAmFRET assay. Systems that we classify as undergoing two-state discontinuous transitions are consistent with prion-like behaviors, although the converse is not always true. We uncover well-established and surprising new sequence features that contribute to two-state phase behavior of prion-like domains. Additionally, our method enables quantitative, comparative assessments of sequence-specific driving forces for phase transitions in live cells. Finally, we demonstrate that a modest augmentation of DAmFRET measurements, specifically time-dependent protein expression profiles, can allow one to apply classical nucleation theory to extract sequence-specific lower bounds on the probability of nucleating ordered assemblies. Taken together, our approaches lead to a useful analysis pipeline that enables the extraction of mechanistic inferences regarding phase transitions in live cells.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Transición de Fase , Aprendizaje Automático Supervisado , Factores de Tiempo
13.
J Am Chem Soc ; 142(47): 19809-19813, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-32338879

RESUMEN

Patterned substitution of d-amino acids into the primary sequences of self-assembling peptides influences molecular-level packing and supramolecular morphology. We report that block heterochiral analogs of the model amphipathic peptide KFE8 (Ac-FKFEFKFE-NH2), composed of two FKFE repeat motifs with opposite chirality, assemble into helical tapes with dimensions greatly exceeding those of their fibrillar homochiral counterparts. At sufficient concentrations, these tapes form hydrogels with reduced storage moduli but retain the shear-thinning behavior and consistent mechanical recovery of the homochiral analogs. Varying the identity of charged residues (FRFEFRFE and FRFDFRFD) produced similarly sized nonhelical tapes, while a peptide with nonenantiomeric l- and d-blocks (FKFEFRFD) formed helical tapes closely resembling those of the heterochiral KFE8 analogs. A proposed energy-minimized model suggests that a kink at the interface between l- and d-blocks leads to the assembly of flat monolayers with nonidentical surfaces that display alternating stacks of hydrophobic and charged groups.


Asunto(s)
Péptidos/química , Secuencia de Aminoácidos , Dicroismo Circular , Hidrogeles/química , Péptidos/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Reología , Dispersión del Ángulo Pequeño , Estereoisomerismo , Difracción de Rayos X
14.
Mol Cell ; 77(6): 1237-1250.e4, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32048997

RESUMEN

Low-complexity protein domains promote the formation of various biomolecular condensates. However, in many cases, the precise sequence features governing condensate formation and identity remain unclear. Here, we investigate the role of intrinsically disordered mixed-charge domains (MCDs) in nuclear speckle condensation. Proteins composed exclusively of arginine-aspartic acid dipeptide repeats undergo length-dependent condensation and speckle incorporation. Substituting arginine with lysine in synthetic and natural speckle-associated MCDs abolishes these activities, identifying a key role for multivalent contacts through arginine's guanidinium ion. MCDs can synergize with a speckle-associated RNA recognition motif to promote speckle specificity and residence. MCD behavior is tunable through net-charge: increasing negative charge abolishes condensation and speckle incorporation. Contrastingly, increasing positive charge through arginine leads to enhanced condensation, speckle enlargement, decreased splicing factor mobility, and defective mRNA export. Together, these results identify key sequence determinants of MCD-promoted speckle condensation and link the dynamic material properties of speckles with function in mRNA processing.


Asunto(s)
Arginina/metabolismo , Núcleo Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Lisina/metabolismo , Empalme del ARN/genética , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Arginina/genética , Núcleo Celular/genética , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Lisina/genética , Mutación , Fosforilación , Dominios Proteicos , ARN Mensajero/genética , Factores de Empalme Serina-Arginina/genética
15.
Methods Enzymol ; 611: 1-30, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30471685

RESUMEN

There is growing interest in the topic of intracellular phase transitions that lead to the formation of biologically regulated biomolecular condensates. These condensates are membraneless bodies formed by phase separation of key protein and nucleic acid molecules from the cytoplasmic or nucleoplasmic milieus. The drivers of phase separation are referred to as scaffolds whereas molecules that preferentially partition into condensates formed by scaffolds are known as clients. Recent advances have shown that it is possible to generate physical and functional facsimiles of many biomolecular condensates in vitro. This is achieved by titrating the concentration of key scaffold proteins and solution parameters such as salt concentration, pH, or temperature. The ability to reproduce phase separation in vitro allows one to compare the relationships between information encoded in the sequences of scaffold proteins and the driving forces for phase separation. Many scaffold proteins include intrinsically disordered regions whereas others are entirely disordered. Our focus is on comparative assessments of phase separation for different scaffold proteins, specifically intrinsically disordered linear multivalent proteins. We highlight the importance of coexistence curves known as binodals for quantifying phase behavior and comparing driving forces for sequence-specific phase separation. We describe the information accessible from full binodals and highlight different methods for-and challenges associated with-mapping binodals. In essence, we provide a wish list for in vitro characterization of phase separation of intrinsically disordered proteins. Fulfillment of this wish list through key advances in experiment, computation, and theory should bring us closer to being able to predict in vitro phase behavior for scaffold proteins and connect this to the functions and features of biomolecular condensates.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Transición de Fase , Algoritmos , Animales , Sitios de Unión , Núcleo Celular/química , Citoplasma/química , Glicoles/química , Humanos , Concentración de Iones de Hidrógeno , Iones/química , Conformación Proteica , Soluciones/química , Temperatura
16.
Mol Cell ; 71(1): 1-3, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29979961

RESUMEN

Prion formation and propagation involve the nucleation and growth of protein-based supramolecular assemblies. In this issue of Molecular Cell, Khan et al. (2018) report novel methods that enable quantitative, high-throughput analyses of nucleation of supramolecular assemblies by prion-forming proteins in living cells. Their approaches turn living cells into veritable test tubes for biophysical investigations.


Asunto(s)
Priones , Fenómenos Fisiológicos Celulares
17.
Protein Sci ; 27(7): 1252-1261, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29498118

RESUMEN

Transthyretin (TTR) is a homotetrameric protein that is found in the plasma and cerebrospinal fluid. Dissociation of TTR tetramers sets off a downhill cascade of amyloid formation through polymerization of monomeric TTR. Interestingly, TTR has an additional, biologically relevant activity, which pertains to its ability to slow the progression of amyloid beta (Aß) associated pathology in transgenic mice. In vitro, both TTR and a kinetically stable variant of monomeric TTR (M-TTR) inhibit the fibril formation of Aß1-40/42 molecules. Published evidence suggests that tetrameric TTR binds preferentially to Aß monomers, thus destabilizing fibril formation by depleting the pool of Aß monomers from aggregating mixtures. Here, we investigate the effects of M-TTR on the in vitro aggregation of Aß1-42 . Our data confirm previous observations that fibril formation of Aß is suppressed in the presence of sub-stoichiometric amounts of M-TTR. Despite this, we find that sub-stoichiometric levels of M-TTR are not bona fide inhibitors of aggregation. Instead, they co-aggregate with Aß to promote the formation of large, micron-scale insoluble, non-fibrillar amorphous deposits. Based on fluorescence correlation spectroscopy measurements, we find that M-TTR does not interact with monomeric Aß. Two-color coincidence analysis of the fluorescence bursts of Aß and M-TTR labeled with different fluorophores shows that M-TTR co-assembles with soluble Aß aggregates and this appears to drive the co-aggregation into amorphous precipitates. Our results suggest that mimicking the co-aggregation activity with protein-based therapeutics might be a worthwhile strategy for rerouting amyloid beta peptides into inert, insoluble, and amorphous deposits.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Prealbúmina/química , Prealbúmina/farmacología , Precipitación Química , Humanos , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Prealbúmina/genética , Agregado de Proteínas/efectos de los fármacos , Multimerización de Proteína
18.
J Biol Chem ; 293(10): 3734-3746, 2018 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-29358329

RESUMEN

Huntingtin N-terminal fragments (Htt-NTFs) with expanded polyglutamine tracts form a range of neurotoxic aggregates that are associated with Huntington's disease. Here, we show that aggregation of Htt-NTFs, irrespective of polyglutamine length, yields at least three phases (designated M, S, and F) that are delineated by sharp concentration thresholds and distinct aggregate sizes and morphologies. We found that monomers and oligomers make up the soluble M phase, ∼25-nm spheres dominate in the soluble S phase, and long, linear fibrils make up the insoluble F phase. Previous studies showed that profilin, an abundant cellular protein, reduces Htt-NTF aggregation and toxicity in cells. We confirm that profilin achieves its cellular effects through direct binding to the C-terminal proline-rich region of Htt-NTFs. We show that profilin preferentially binds to Htt-NTF M-phase species and destabilizes aggregation and phase separation by shifting the concentration boundaries for phase separation to higher values through a process known as polyphasic linkage. Our experiments, aided by coarse-grained computer simulations and theoretical analysis, suggest that preferential binding of profilin to the M-phase species of Htt-NTFs is enhanced through a combination of specific interactions between profilin and polyproline segments and auxiliary interactions between profilin and polyglutamine tracts. Polyphasic linkage may be a general strategy that cells utilize to regulate phase behavior of aggregation-prone proteins. Accordingly, detailed knowledge of phase behavior and an understanding of how ligands modulate phase boundaries may pave the way for developing new therapeutics against a variety of aggregation-prone proteins.


Asunto(s)
Proteína Huntingtina/metabolismo , Modelos Moleculares , Profilinas/metabolismo , Agregación Patológica de Proteínas/prevención & control , Sustitución de Aminoácidos , Sitios de Unión , Fluorescencia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/ultraestructura , Procesamiento de Imagen Asistido por Computador , Ligandos , Microscopía Electrónica de Transmisión , Mutación , Coloración Negativa , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Ácido Poliglutámico/química , Ácido Poliglutámico/genética , Ácido Poliglutámico/metabolismo , Profilinas/química , Profilinas/genética , Profilinas/ultraestructura , Dominios Proteicos Ricos en Prolina , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Dispersión del Ángulo Pequeño , Solubilidad , Termodinámica , Triptófano/química
19.
ACS Cent Sci ; 3(11): 1156-1167, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29202017

RESUMEN

Dnm1 and Fis1 are prototypical proteins that regulate yeast mitochondrial morphology by controlling fission, the dysregulation of which can result in developmental disorders and neurodegenerative diseases in humans. Loss of Dnm1 blocks the formation of fission complexes and leads to elongated mitochondria in the form of interconnected networks, while overproduction of Dnm1 results in excessive mitochondrial fragmentation. In the current model, Dnm1 is essentially a GTP hydrolysis-driven molecular motor that self-assembles into ring-like oligomeric structures that encircle and pinch the outer mitochondrial membrane at sites of fission. In this work, we use machine learning and synchrotron small-angle X-ray scattering (SAXS) to investigate whether the motor Dnm1 can synergistically facilitate mitochondrial fission by membrane remodeling. A support vector machine (SVM)-based classifier trained to detect sequences with membrane-restructuring activity identifies a helical Dnm1 domain capable of generating negative Gaussian curvature (NGC), the type of saddle-shaped local surface curvature found on scission necks during fission events. Furthermore, this domain is highly conserved in Dnm1 homologues with fission activity. Synchrotron SAXS measurements reveal that Dnm1 restructures membranes into phases rich in NGC, and is capable of inducing a fission neck with a diameter of 12.6 nm. Through in silico mutational analysis, we find that the helical Dnm1 domain is locally optimized for membrane curvature generation, and phylogenetic analysis suggests that dynamin superfamily proteins that are close relatives of human dynamin Dyn1 have evolved the capacity to restructure membranes via the induction of curvature mitochondrial fission. In addition, we observe that Fis1, an adaptor protein, is able to inhibit the pro-fission membrane activity of Dnm1, which points to the antagonistic roles of the two proteins in the regulation of mitochondrial fission.

20.
Protein Eng Des Sel ; 29(9): 339-46, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27503953

RESUMEN

Many intrinsically disordered proteins (IDPs) participate in coupled folding and binding reactions and form alpha helical structures in their bound complexes. Alanine, glycine, or proline scanning mutagenesis approaches are often used to dissect the contributions of intrinsic helicities to coupled folding and binding. These experiments can yield confounding results because the mutagenesis strategy changes the amino acid compositions of IDPs. Therefore, an important next step in mutagenesis-based approaches to mechanistic studies of coupled folding and binding is the design of sequences that satisfy three major constraints. These are (i) achieving a target intrinsic alpha helicity profile; (ii) fixing the positions of residues corresponding to the binding interface; and (iii) maintaining the native amino acid composition. Here, we report the development of a G: enetic A: lgorithm for D: esign of I: ntrinsic secondary S: tructure (GADIS) for designing sequences that satisfy the specified constraints. We describe the algorithm and present results to demonstrate the applicability of GADIS by designing sequence variants of the intrinsically disordered PUMA system that undergoes coupled folding and binding to Mcl-1. Our sequence designs span a range of intrinsic helicity profiles. The predicted variations in sequence-encoded mean helicities are tested against experimental measurements.


Asunto(s)
Algoritmos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos , Modelos Moleculares , Mutagénesis , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...