Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716726

RESUMEN

Childhood-onset essential hypertension (COEH) is an uncommon form of hypertension that manifests in childhood or adolescence and, in the United States, disproportionately affects children of African ancestry. The etiology of COEH is unknown, but its childhood onset, low prevalence, high heritability, and skewed ancestral demography suggest the potential to identify rare genetic variation segregating in a Mendelian manner among affected individuals and thereby implicate genes important to disease pathogenesis. However, no COEH genes have been reported to date. Here, we identify recessive segregation of rare and putatively damaging missense variation in the spectrin domain of spectrin repeat containing nuclear envelope protein 1 (SYNE1), a cardiovascular candidate gene, in 3 of 16 families with early-onset COEH without an antecedent family history. By leveraging exome sequence data from an additional 48 COEH families, 1,700 in-house trios, and publicly available data sets, we demonstrate that compound heterozygous SYNE1 variation in these COEH individuals occurred more often than expected by chance and that this class of biallelic rare variation was significantly enriched among individuals of African genetic ancestry. Using in vitro shRNA knockdown of SYNE1, we show that reduced SYNE1 expression resulted in a substantial decrease in the elasticity of smooth muscle vascular cells that could be rescued by pharmacological inhibition of the downstream RhoA/Rho-associated protein kinase pathway. These results provide insights into the molecular genetics and underlying pathophysiology of COEH and suggest a role for precision therapeutics in the future.


Asunto(s)
Proteínas del Citoesqueleto , Hipertensión Esencial , Secuenciación del Exoma , Proteínas del Tejido Nervioso , Adolescente , Niño , Femenino , Humanos , Masculino , Edad de Inicio , Proteínas del Citoesqueleto/genética , Hipertensión Esencial/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Mutación Missense/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Linaje , Proteína de Unión al GTP rhoA/genética , Estados Unidos/epidemiología , Recién Nacido , Lactante , Preescolar , Adulto Joven
2.
Genet Med ; : 101164, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38757444

RESUMEN

PURPOSE: The ClinGen Actionability Working Group (AWG) developed an evidence-based framework to generate actionability reports and scores of gene-condition pairs in the context of secondary findings from genome sequencing. Here we describe the expansion of the framework to include actionability assertions. METHODS: Initial development of the actionability rubric was based on previously scored adult gene-condition pairs and individual expert evaluation. Rubric refinement was iterative and based on evaluation, feedback, and discussion. The final rubric was pragmatically evaluated via integration into actionability assessments for 27 gene-condition pairs. RESULTS: The resulting rubric has a four-point scale (limited, moderate, strong, definitive) and uses the highest-scoring outcome-intervention pair of each gene-condition pair to generate a preliminary assertion. During AWG discussions, pre-defined criteria and factors guide discussion to produce a consensus assertion for a gene-condition pair, which may differ from the preliminary assertion. The AWG has retrospectively generated assertions for all previously scored gene-condition pairs and are prospectively asserting on gene-condition pairs under assessment, having completed over 170 adult and 188 pediatric gene-condition pairs. CONCLUSION: The AWG expanded its framework to provide actionability assertions to enhance the clinical value of their resources and increase their utility as decision aids regarding return of secondary findings.

3.
Nat Rev Genet ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605218

RESUMEN

Nearly every mammalian cell division is accompanied by a mutational event that becomes fixed in a daughter cell. When carried forward to additional cell progeny, a clone of variant cells can emerge. As a result, mammals are complex mosaics of clones that are genetically distinct from one another. Recent high-throughput sequencing studies have revealed that mosaicism is common, clone sizes often increase with age and specific variants can affect tissue function and disease development. Variants that are acquired during early embryogenesis are shared by multiple cell types and can affect numerous tissues. Within tissues, variant clones compete, which can result in their expansion or elimination. Embryonic mosaicism has clinical implications for genetic disease severity and transmission but is likely an under-recognized phenomenon. To better understand its implications for mosaic individuals, it is essential to leverage research tools that can elucidate the mechanisms by which expanded embryonic variants influence development and disease.

4.
BMC Med Genomics ; 17(1): 85, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622594

RESUMEN

BACKGROUND: Multilocus pathogenic variants (MPVs) are genetic changes that affect multiple gene loci or regions of the genome, collectively leading to multiple molecular diagnoses. MPVs may also contribute to intrafamilial phenotypic variability between affected individuals within a nuclear family. In this study, we aim to gain further insights into the influence of MPVs on a disease manifestation in individual research subjects and explore the complexities of the human genome within a familial context. METHODS: We conducted a systematic reanalysis of exome sequencing data and runs of homozygosity (ROH) regions of 47 sibling pairs previously diagnosed with various neurodevelopmental disorders (NDD). RESULTS: We found siblings with MPVs driven by long ROH regions in 8.5% of families (4/47). The patients with MPVs exhibited significantly higher FROH values (p-value = 1.4e-2) and larger total ROH length (p-value = 1.8e-2). Long ROH regions mainly contribute to this pattern; the siblings with MPVs have a larger total size of long ROH regions than their siblings in all families (p-value = 6.9e-3). Whereas the short ROH regions in the siblings with MPVs are lower in total size compared to their sibling pairs with single locus pathogenic variants (p-value = 0.029), and there are no statistically significant differences in medium ROH regions between sibling pairs (p-value = 0.52). CONCLUSION: This study sheds light on the significance of considering MPVs in families with affected sibling pairs and the role of ROH as an adjuvant tool in explaining clinical variability within families. Identifying individuals carrying MPVs may have implications for disease management, identification of possible disease risks to different family members, genetic counseling and exploring personalized treatment approaches.


Asunto(s)
Genoma Humano , Hermanos , Humanos , Estudios Retrospectivos , Homocigoto , Polimorfismo de Nucleótido Simple , Variación Biológica Poblacional , Genotipo
5.
medRxiv ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38645101

RESUMEN

Background: Multiplexed Assays of Variant Effects (MAVEs) can test all possible single variants in a gene of interest. The resulting saturation-style data may help resolve variant classification disparities between populations, especially for variants of uncertain significance (VUS). Methods: We analyzed clinical significance classifications in 213,663 individuals of European-like genetic ancestry versus 206,975 individuals of non-European-like genetic ancestry from All of Us and the Genome Aggregation Database. Then, we incorporated clinically calibrated MAVE data into the Clinical Genome Resource's Variant Curation Expert Panel rules to automate VUS reclassification for BRCA1, TP53, and PTEN . Results: Using two orthogonal statistical approaches, we show a higher prevalence ( p ≤5.95e-06) of VUS in individuals of non-European-like genetic ancestry across all medical specialties assessed in all three databases. Further, in the non-European-like genetic ancestry group, higher rates of Benign or Likely Benign and variants with no clinical designation ( p ≤2.5e-05) were found across many medical specialties, whereas Pathogenic or Likely Pathogenic assignments were higher in individuals of European-like genetic ancestry ( p ≤2.5e-05). Using MAVE data, we reclassified VUS in individuals of non-European-like genetic ancestry at a significantly higher rate in comparison to reclassified VUS from European-like genetic ancestry ( p =9.1e-03) effectively compensating for the VUS disparity. Further, essential code analysis showed equitable impact of MAVE evidence codes but inequitable impact of allele frequency ( p =7.47e-06) and computational predictor ( p =6.92e-05) evidence codes for individuals of non-European-like genetic ancestry. Conclusions: Generation of saturation-style MAVE data should be a priority to reduce VUS disparities and produce equitable training data for future computational predictors.

6.
Genome Med ; 16(1): 53, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570875

RESUMEN

BACKGROUND: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-ß/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. METHODS: We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. RESULTS: Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G > A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. CONCLUSION: Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model.


Asunto(s)
Cardiopatías Congénitas , Síndrome de Heterotaxia , Transposición de los Grandes Vasos , Animales , Humanos , Arterias , Hibridación Genómica Comparativa , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Fenotipo
7.
Proc Natl Acad Sci U S A ; 121(18): e2310283121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38669183

RESUMEN

Congenital scoliosis (CS), affecting approximately 0.5 to 1 in 1,000 live births, is commonly caused by congenital vertebral malformations (CVMs) arising from aberrant somitogenesis or somite differentiation. While Wnt/ß-catenin signaling has been implicated in somite development, the function of Wnt/planar cell polarity (Wnt/PCP) signaling in this process remains unclear. Here, we investigated the role of Vangl1 and Vangl2 in vertebral development and found that their deletion causes vertebral anomalies resembling human CVMs. Analysis of exome sequencing data from multiethnic CS patients revealed a number of rare and deleterious variants in VANGL1 and VANGL2, many of which exhibited loss-of-function and dominant-negative effects. Zebrafish models confirmed the pathogenicity of these variants. Furthermore, we found that Vangl1 knock-in (p.R258H) mice exhibited vertebral malformations in a Vangl gene dose- and environment-dependent manner. Our findings highlight critical roles for PCP signaling in vertebral development and predisposition to CVMs in CS patients, providing insights into the molecular mechanisms underlying this disorder.


Asunto(s)
Proteínas Portadoras , Polaridad Celular , Proteínas de la Membrana , Columna Vertebral , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/embriología , Humanos , Ratones , Polaridad Celular/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Columna Vertebral/anomalías , Columna Vertebral/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Escoliosis/genética , Escoliosis/congénito , Escoliosis/metabolismo , Vía de Señalización Wnt/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Femenino
8.
Diabetes Care ; 47(5): 770-781, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38329838

RESUMEN

As our understanding of the pathophysiology of diabetes evolves, we increasingly recognize that many patients may have a form of diabetes that does not neatly fit with a diagnosis of either type 1 or type 2 diabetes. The discovery and description of these forms of "atypical diabetes" have led to major contributions to our collective understanding of the basic biology that drives insulin secretion, insulin resistance, and islet autoimmunity. These discoveries now pave the way to a better classification of diabetes based on distinct endotypes. In this review, we highlight the key biological and clinical insights that can be gained from studying known forms of atypical diabetes. Additionally, we provide a framework for identification of patients with atypical diabetes based on their clinical, metabolic, and molecular features. Helpful clinical and genetic resources for evaluating patients suspected of having atypical diabetes are provided. Therefore, appreciating the various endotypes associated with atypical diabetes will enhance diagnostic accuracy and facilitate targeted treatment decisions.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Autoinmunidad , Secreción de Insulina
9.
Am J Hum Genet ; 111(3): 487-508, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325380

RESUMEN

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Femenino , Animales , Humanos , Discapacidad Intelectual/patología , Pez Cebra/genética , Mutación Missense/genética , Factores de Transcripción/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
10.
Clin Genet ; 105(6): 620-629, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38356149

RESUMEN

PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.


Asunto(s)
Trastornos del Neurodesarrollo , Fenotipo , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Linaje
11.
Eur J Hum Genet ; 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38177409

RESUMEN

Rare diseases affect millions of people worldwide, and most have a genetic etiology. The incorporation of next-generation sequencing into clinical settings, particularly exome and genome sequencing, has resulted in an unprecedented improvement in diagnosis and discovery in the past decade. Nevertheless, these tools are unavailable in many countries, increasing health care gaps between high- and low-and-middle-income countries and prolonging the "diagnostic odyssey" for patients. To advance genomic diagnoses in a setting of limited genomic resources, we developed DECIPHERD, an undiagnosed diseases program in Chile. DECIPHERD was implemented in two phases: training and local development. The training phase relied on international collaboration with Baylor College of Medicine, and the local development was structured as a hybrid model, where clinical and bioinformatics analysis were performed in-house and sequencing outsourced abroad, due to lack of high-throughput equipment in Chile. We describe the implementation process and findings of the first 103 patients. They had heterogeneous phenotypes, including congenital anomalies, intellectual disabilities and/or immune system dysfunction. Patients underwent clinical exome or research exome sequencing, as solo cases or with parents using a trio design. We identified pathogenic, likely pathogenic or variants of unknown significance in genes related to the patients´ phenotypes in 47 (45.6%) of them. Half were de novo informative variants, and half of the identified variants have not been previously reported in public databases. DECIPHERD ended the diagnostic odyssey for many participants. This hybrid strategy may be useful for settings of similarly limited genomic resources and lead to discoveries in understudied populations.

12.
medRxiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38260255

RESUMEN

SPOUT1/CENP-32 encodes a putative SPOUT RNA methyltransferase previously identified as a mitotic chromosome associated protein. SPOUT1/CENP-32 depletion leads to centrosome detachment from the spindle poles and chromosome misalignment. Aided by gene matching platforms, we identified 24 individuals with neurodevelopmental delays from 18 families with bi-allelic variants in SPOUT1/CENP-32 detected by exome/genome sequencing. Zebrafish spout1/cenp-32 mutants showed reduction in larval head size with concomitant apoptosis likely associated with altered cell cycle progression. In vivo complementation assays in zebrafish indicated that SPOUT1/CENP-32 missense variants identified in humans are pathogenic. Crystal structure analysis of SPOUT1/CENP-32 revealed that most disease-associated missense variants mapped to the catalytic domain. Additionally, SPOUT1/CENP-32 recurrent missense variants had reduced methyltransferase activity in vitro and compromised centrosome tethering to the spindle poles in human cells. Thus, SPOUT1/CENP-32 pathogenic variants cause an autosomal recessive neurodevelopmental disorder: SpADMiSS ( SPOUT1 Associated Development delay Microcephaly Seizures Short stature) underpinned by mitotic spindle organization defects and consequent chromosome segregation errors.

13.
Am J Med Genet A ; 194(3): e63455, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921537

RESUMEN

Our understanding of genetic and phenotypic heterogeneity associated with the clinical spectrum of rare diseases continues to expand. Thorough phenotypic descriptions and model organism functional studies are valuable tools in dissecting the biology of the disease process. Kinesin genes are well known to be associated with specific disease phenotypes and a subset of kinesin genes, including KIF21A, have been associated with more than one disease. Here we report two patients with KIF21A variants identified by exome sequencing; one with biallelic variants, supporting a novel KIF21A related syndrome with recessive inheritance and the second report of this condition, and another with a heterozygous de novo variant allele representing a phenotypic expansion of the condition described to date. We provide detailed phenotypic information on both families, including a novel neuropathology finding of neuroaxonal dystrophy associated with biallelic variants in KIF21A. Additionally, we studied the dominant variant in Saccharomyces cerevisiae to assess variant pathogenicity and found that this variant appears to impair protein function. KIF21A associated disease has mounting evidence for phenotypic heterogeneity; further patients and study of an allelic series are required to define the phenotypic spectrum and further explore the molecular etiology for each of these conditions.


Asunto(s)
Cinesinas , Enfermedades del Sistema Nervioso , Humanos , Cinesinas/genética , Fenotipo , Mutación
15.
Nucleic Acids Res ; 52(4): e18, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153174

RESUMEN

Homozygous duplications contribute to genetic disease by altering gene dosage or disrupting gene regulation and can be more deleterious to organismal biology than heterozygous duplications. Intragenic exonic duplications can result in loss-of-function (LoF) or gain-of-function (GoF) alleles that when homozygosed, i.e. brought to homozygous state at a locus by identity by descent or state, could potentially result in autosomal recessive (AR) rare disease traits. However, the detection and functional interpretation of homozygous duplications from exome sequencing data remains a challenge. We developed a framework algorithm, HMZDupFinder, that is designed to detect exonic homozygous duplications from exome sequencing (ES) data. The HMZDupFinder algorithm can efficiently process large datasets and accurately identifies small intragenic duplications, including those associated with rare disease traits. HMZDupFinder called 965 homozygous duplications with three or less exons from 8,707 ES with a recall rate of 70.9% and a precision of 16.1%. We experimentally confirmed 8/10 rare homozygous duplications. Pathogenicity assessment of these copy number variant alleles allowed clinical genomics contextualization for three homozygous duplications alleles, including two affecting known OMIM disease genes EDAR (MIM# 224900), TNNT1(MIM# 605355), and one variant in a novel candidate disease gene: PAAF1.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Programas Informáticos , Humanos , Proteínas Adaptadoras Transductoras de Señales , Homocigoto , Enfermedades Raras/genética
16.
J Inherit Metab Dis ; 46(6): 1195-1205, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37711075

RESUMEN

Biallelic variants in genes for seven out of eight subunits of the conserved oligomeric Golgi complex (COG) are known to cause recessive congenital disorders of glycosylation (CDG) with variable clinical manifestations. COG3 encodes a constituent subunit of the COG complex that has not been associated with disease traits in humans. Herein, we report two COG3 homozygous missense variants in four individuals from two unrelated consanguineous families that co-segregated with COG3-CDG presentations. Clinical phenotypes of affected individuals include global developmental delay, severe intellectual disability, microcephaly, epilepsy, facial dysmorphism, and variable neurological findings. Biochemical analysis of serum transferrin from one family showed the loss of a single sialic acid. Western blotting on patient-derived fibroblasts revealed reduced COG3 and COG4. Further experiments showed delayed retrograde vesicular recycling in patient cells. This report adds to the knowledge of the COG-CDG network by providing collective evidence for a COG3-CDG rare disease trait and implicating a likely pathology of the disorder as the perturbation of Golgi trafficking.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Trastornos Congénitos de Glicosilación , Humanos , Glicosilación , Proteínas Adaptadoras del Transporte Vesicular/genética , Fibroblastos/metabolismo , Trastornos Congénitos de Glicosilación/genética , Fenotipo
17.
Hum Mol Genet ; 32(20): 2981-2995, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37531237

RESUMEN

Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Proteína Fosfatasa 1/genética , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Glucosa , Glucógeno , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/complicaciones
18.
Clin Genet ; 104(3): 344-349, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37157980

RESUMEN

Pathogenic biallelic variants in LSS are associated with three Mendelian rare disease traits including congenital cataract type 44, autosomal recessive hypotrichosis type 14, and alopecia-intellectual disability syndrome type 4 (APMR4). We performed trio research exome sequencing on a family with a four-year-old male with global developmental delay, epilepsy and striking alopecia, and identified novel compound heterozygous LSS splice site (c.14+2T>C) and missense (c.1357 G>A; p.V453L) variant alleles. Rare features associated with APMR4 such as cryptorchidism, micropenis, mild cortical brain atrophy and thin corpus callosum were detected. Previously unreported APMR4 findings including cerebellar involvement in the form of unsteady ataxic gait, small vermis with prominent folia, were noted. A review of all reported variants to date in 29 families with LSS-related phenotypes showed an emerging genotype-phenotype correlation. Our report potentially expands LSS-related phenotypic spectrum and highlights the importance of performing brain imaging in LSS-related conditions.


Asunto(s)
Discapacidad Intelectual , Masculino , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Mutación , Enfermedades Raras , Alopecia/diagnóstico , Alopecia/genética , Fenotipo , Síndrome
19.
HGG Adv ; 4(3): 100188, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37124138

RESUMEN

Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by aplasia of the female reproductive tract; the syndrome can include renal anomalies, absence or dysgenesis, and skeletal anomalies. While functional models have elucidated several candidate genes, only WNT4 (MIM: 603490) variants have been definitively associated with a subtype of MRKH with hyperandrogenism (MIM: 158330). DNA from 148 clinically diagnosed MRKH probands across 144 unrelated families and available family members from North America, Europe, and South America were exome sequenced (ES) and by family-based genomics analyzed for rare likely deleterious variants. A replication cohort consisting of 442 Han Chinese individuals with MRKH was used to further reproduce GREB1L findings in diverse genetic backgrounds. Proband and OMIM phenotypes annotated using the Human Phenotype Ontology were analyzed to quantitatively delineate the phenotypic spectrum associated with GREB1L variant alleles found in our MRKH cohort and those previously published. This study reports 18 novel GREB1L variant alleles, 16 within a multiethnic MRKH cohort and two within a congenital scoliosis cohort. Cohort-wide analyses for a burden of rare variants within a single gene identified likely damaging variants in GREB1L (MIM: 617782), a known disease gene for renal hypoplasia and uterine abnormalities (MIM: 617805), in 16 of 590 MRKH probands. GREB1L variant alleles, including a CNV null allele, were found in 8 MRKH type 1 probands and 8 MRKH type II probands. This study used quantitative phenotypic analyses in a worldwide multiethnic cohort to identify and strengthen the association of GREB1L to isolated uterine agenesis (MRKH type I) and syndromic MRKH type II.


Asunto(s)
Trastornos del Desarrollo Sexual 46, XX , Anomalías Urogenitales , Femenino , Humanos , Trastornos del Desarrollo Sexual 46, XX/genética , Útero/anomalías
20.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071997

RESUMEN

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Femenino , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/complicaciones , Haploinsuficiencia/genética , Discapacidad Intelectual/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Fenotipo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...