Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(10): 113305, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37864798

RESUMEN

Oxytocin-expressing paraventricular hypothalamic neurons (PVNOT neurons) integrate afferent signals from the gut, including cholecystokinin (CCK), to adjust whole-body energy homeostasis. However, the molecular underpinnings by which PVNOT neurons orchestrate gut-to-brain feeding control remain unclear. Here, we show that mice undergoing selective ablation of PVNOT neurons fail to reduce food intake in response to CCK and develop hyperphagic obesity on a chow diet. Notably, exposing wild-type mice to a high-fat/high-sugar (HFHS) diet recapitulates this insensitivity toward CCK, which is linked to diet-induced transcriptional and electrophysiological aberrations specifically in PVNOT neurons. Restoring OT pathways in diet-induced obese (DIO) mice via chemogenetics or polypharmacology sufficiently re-establishes CCK's anorexigenic effects. Last, by single-cell profiling, we identify a specialized PVNOT neuronal subpopulation with increased κ-opioid signaling under an HFHS diet, which restrains their CCK-evoked activation. In sum, we document a (patho)mechanism by which PVNOT signaling uncouples a gut-brain satiation pathway under obesogenic conditions.


Asunto(s)
Oxitocina , Núcleo Hipotalámico Paraventricular , Ratones , Animales , Oxitocina/farmacología , Núcleo Hipotalámico Paraventricular/metabolismo , Analgésicos Opioides/farmacología , Neuronas/metabolismo , Saciedad , Colecistoquinina/metabolismo
2.
Cell Metab ; 35(5): 821-836.e7, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36948185

RESUMEN

The mechanisms that specify and stabilize cell subtypes remain poorly understood. Here, we identify two major subtypes of pancreatic ß cells based on histone mark heterogeneity (ßHI and ßLO). ßHI cells exhibit ∼4-fold higher levels of H3K27me3, distinct chromatin organization and compaction, and a specific transcriptional pattern. ßHI and ßLO cells also differ in size, morphology, cytosolic and nuclear ultrastructure, epigenomes, cell surface marker expression, and function, and can be FACS separated into CD24+ and CD24- fractions. Functionally, ßHI cells have increased mitochondrial mass, activity, and insulin secretion in vivo and ex vivo. Partial loss of function indicates that H3K27me3 dosage regulates ßHI/ßLO ratio in vivo, suggesting that control of ß cell subtype identity and ratio is at least partially uncoupled. Both subtypes are conserved in humans, with ßHI cells enriched in humans with type 2 diabetes. Thus, epigenetic dosage is a novel regulator of cell subtype specification and identifies two functionally distinct ß cell subtypes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Células Secretoras de Insulina/metabolismo , Histonas/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Epigénesis Genética , Secreción de Insulina
3.
Front Cell Neurosci ; 16: 944875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187297

RESUMEN

There is growing evidence for the key role of microglial functional state in brain pathophysiology. Consequently, there is a need for efficient automated methods to measure the morphological changes distinctive of microglia functional states in research settings. Currently, many commonly used automated methods can be subject to sample representation bias, time consuming imaging, specific hardware requirements and difficulty in maintaining an accurate comparison across research environments. To overcome these issues, we use commercially available deep learning tools Aiforia® Cloud (Aifoira Inc., Cambridge, MA, United States) to quantify microglial morphology and cell counts from histopathological slides of Iba1 stained tissue sections. We provide evidence for the effective application of this method across a range of independently collected datasets in mouse models of viral infection and Parkinson's disease. Additionally, we provide a comprehensive workflow with training details and annotation strategies by feature layer that can be used as a guide to generate new models. In addition, all models described in this work are available within the Aiforia® platform for study-specific adaptation and validation.

4.
Cell Genom ; 2(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35873672

RESUMEN

We have developed a mouse DNA methylation array that contains 296,070 probes representing the diversity of mouse DNA methylation biology. We present a mouse methylation atlas as a rich reference resource of 1,239 DNA samples encompassing distinct tissues, strains, ages, sexes, and pathologies. We describe applications for comparative epigenomics, genomic imprinting, epigenetic inhibitors, patient-derived xenograft assessment, backcross tracing, and epigenetic clocks. We dissect DNA methylation processes associated with differentiation, aging, and tumorigenesis. Notably, we find that tissue-specific methylation signatures localize to binding sites for transcription factors controlling the corresponding tissue development. Age-associated hypermethylation is enriched at regions of Polycomb repression, while hypomethylation is enhanced at regions bound by cohesin complex members. Apc Min/+ polyp-associated hypermethylation affects enhancers regulating intestinal differentiation, while hypomethylation targets AP-1 binding sites. This Infinium Mouse Methylation BeadChip (version MM285) is widely accessible to the research community and will accelerate high-sample-throughput studies in this important model organism.

5.
J Vis Exp ; (184)2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35786676

RESUMEN

Obesity is a complex disease influenced by genetics, epigenetics, the environment, and their interactions. Mature adipocytes represent the major cell type in white adipose tissue. Understanding how adipocytes function and respond to (epi)genetic and environmental signals is essential for identifying the cause(s) of obesity. RNA and chromatin have previously been isolated from adipocytes using enzymatic digestion. In addition, protocols have been developed for nuclear isolation, where purification is achieved by fluorescence-activated cell sorting (FACS) of adipocyte-specific transgenic reporters. One of the greatest challenges to achieving high yield and quality during such protocols is the substantial amount of lipid contained in adipose tissue. The present protocol describes an optimized procedure for isolating mature adipocytes that leverages heptane to separate lipids from the targets of interest (RNA/chromatin). The resulting RNA has high integrity and generates high-quality RNA-seq results. Likewise, the procedure improves nuclei yield rate and generates reproducible ChIP-seq results across samples. Therefore, the current study provides a reliable and universal murine adipocyte isolation protocol suitable for whole-genome transcriptome and epigenome studies.


Asunto(s)
Adipocitos Blancos , Transcriptoma , Animales , Cromatina/metabolismo , Epigenoma , Ratones , Obesidad/metabolismo , ARN/metabolismo
6.
Mov Disord ; 37(8): 1644-1653, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723531

RESUMEN

BACKGROUND: The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES: Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS: Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS: We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS: Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Butiratos , Depresión/genética , Epigénesis Genética , Microbioma Gastrointestinal/genética , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/microbiología
7.
Int J Obes (Lond) ; 44(10): 2124-2136, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32203115

RESUMEN

BACKGROUND: G protein-coupled receptors (GPCR) are well-characterized regulators of a plethora of physiological functions among them the modulation of adipogenesis and adipocyte function. The class of Adhesion GPCR (aGPCR) and their role in adipose tissue, however, is poorly studied. With respect to the demand for novel targets in obesity treatment, we present a comprehensive study on the expression and function of this enigmatic GPCR class during adipogenesis and in mature adipocytes. METHODS: The expression of all aGPCR representatives was determined by reanalyzing RNA-Seq data and by performing qPCR in different mouse and human adipose tissues under low- and high-fat conditions. The impact of aGPCR expression on adipocyte differentiation and lipid accumulation was studied by siRNA-mediated knockdown of all expressed members of this receptor class. The biological characteristics and function of mature adipocytes lacking selected aGPCR were analyzed by mass spectrometry and biochemical methods (lipolysis, glucose uptake, adiponectin secretion). RESULTS: More than ten aGPCR are significantly expressed in visceral and subcutaneous adipose tissues and several aGPCR are differentially regulated under high-caloric conditions in human and mouse. Receptor knockdown of six receptors resulted in an impaired adipogenesis indicating their expression is essential for proper adipogenesis. The altered lipid composition was studied in more detail for two representatives, ADGRG2/GPR64 and ADGRG6/GPR126. While GPR126 is mainly involved in adipocyte differentiation, GPR64 has an additional role in mature adipocytes by regulating metabolic processes. CONCLUSIONS: Adhesion GPCR are significantly involved in qualitative and quantitative adipocyte lipid accumulation and can control lipolysis. Factors driving adipocyte formation and function are governed by signaling pathways induced by aGPCR yielding these receptors potential targets for treating obesity.


Asunto(s)
Adipocitos/fisiología , Adipogénesis , Receptores Acoplados a Proteínas G/fisiología , Células 3T3-L1 , Animales , Humanos , Metabolismo de los Lípidos , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , RNA-Seq
8.
Commun Biol ; 1: 214, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534606

RESUMEN

Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) is an invaluable tool for mapping chromatin-associated proteins. Current barcoding strategies aim to improve assay throughput and scalability but intense sample handling and lack of standardization over cell types, cell numbers and epitopes hinder wide-spread use in the field. Here, we present a barcoding method to enable high-throughput ChIP-seq using common molecular biology techniques. The method, called RELACS (restriction enzyme-based labeling of chromatin in situ) relies on standardized nuclei extraction from any source and employs chromatin cutting and barcoding within intact nuclei. Barcoded nuclei are pooled and processed within the same ChIP reaction, for maximal comparability and workload reduction. The innovative barcoding concept is particularly user-friendly and suitable for implementation to standardized large-scale clinical studies and scarce samples. Aiming to maximize universality and scalability, RELACS can generate ChIP-seq libraries for transcription factors and histone modifications from hundreds of samples within three days.

9.
Mol Metab ; 14: 26-38, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29909200

RESUMEN

BACKGROUND: The alarming rise of obesity and its associated comorbidities represents a medical burden and a major global health and economic issue. Understanding etiological mechanisms underpinning susceptibility and therapeutic response is of primary importance. Obesity, diabetes, and metabolic diseases are complex trait disorders with only partial genetic heritability, indicating important roles for environmental programing and epigenetic effects. SCOPE OF THE REVIEW: We will highlight some of the reasons for the scarce predictability of metabolic diseases. We will outline how genetic variants generate phenotypic variation in disease susceptibility across populations. We will then focus on recent conclusions about epigenetic mechanisms playing a fundamental role in increasing variability and subsequently disease triggering. MAJOR CONCLUSIONS: Currently, we are unable to predict or mechanistically define how "missing heritability" drives disease. Unravelling this black box of regulatory processes will allow us to move towards a truly personalized and precision medicine.


Asunto(s)
Variación Biológica Poblacional , Epigénesis Genética , Enfermedades Metabólicas/genética , Animales , Humanos , Procesos Estocásticos
10.
Methods Mol Biol ; 1766: 257-283, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605858

RESUMEN

Understanding biological systems at a single cell resolution may reveal several novel insights which remain masked by the conventional population-based techniques providing an average readout of the behavior of cells. Single-cell transcriptome sequencing holds the potential to identify novel cell types and characterize the cellular composition of any organ or tissue in health and disease. Here, we describe a customized high-throughput protocol for single-cell RNA-sequencing (scRNA-seq) combining flow cytometry and a nanoliter-scale robotic system. Since scRNA-seq requires amplification of a low amount of endogenous cellular RNA, leading to substantial technical noise in the dataset, downstream data filtering and analysis require special care. Therefore, we also briefly describe in-house state-of-the-art data analysis algorithms developed to identify cellular subpopulations including rare cell types as well as to derive lineage trees by ordering the identified subpopulations of cells along the inferred differentiation trajectories.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética , Análisis de la Célula Individual/métodos , Animales , Cartilla de ADN/genética , ADN Complementario/genética , Análisis de Datos , Perfilación de la Expresión Génica , Humanos , Alineación de Secuencia , Programas Informáticos , Transcripción Genética
11.
Cell Metab ; 26(1): 171-184.e6, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28683285

RESUMEN

Natural killer (NK) cells contribute to the development of obesity-associated insulin resistance. We demonstrate that in mice obesity promotes expansion of a distinct, interleukin-6 receptor (IL6R)a-expressing NK subpopulation, which also expresses a number of other myeloid lineage genes such as the colony-stimulating factor 1 receptor (Csf1r). Selective ablation of this Csf1r-expressing NK cell population prevents obesity and insulin resistance. Moreover, conditional inactivation of IL6Ra or Stat3 in NK cells limits obesity-associated formation of these myeloid signature NK cells, protecting from obesity, insulin resistance, and obesity-associated inflammation. Also in humans IL6Ra+ NK cells increase in obesity and correlate with markers of systemic low-grade inflammation, and their gene expression profile overlaps with characteristic gene sets of NK cells in obese mice. Collectively, we demonstrate that obesity-associated inflammation and metabolic disturbances depend on interleukin-6/Stat3-dependent formation of a distinct NK population, which may provide a target for the treatment of obesity, metaflammation-associated pathologies, and diabetes.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Inflamación/metabolismo , Interleucina-6/metabolismo , Células Asesinas Naturales/patología , Obesidad/metabolismo , Factor de Transcripción STAT3/metabolismo , Adulto , Animales , Homeostasis , Humanos , Inflamación/complicaciones , Inflamación/patología , Resistencia a la Insulina , Células Asesinas Naturales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/complicaciones , Obesidad/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Interleucina-6/metabolismo , Transducción de Señal , Adulto Joven
12.
Methods Mol Biol ; 1322: 187-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26179049

RESUMEN

Hedgehog is a morphogen essential for body patterning and proper embryonic development from flies to humans. Thought quiescent in adults, its inappropriate reactivation is associated with many disparate genetic and sporadic types of human cancers. Recent findings have demonstrated a key, yet unexpected, role of the Hedgehog signaling pathway in metabolic control. Here, we describe a panel of methods to determine and analyze cellular and organismal metabolic changes downstream of the Hedgehog signaling pathway.


Asunto(s)
Proteínas Hedgehog/metabolismo , Transducción de Señal , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Señalización del Calcio , Técnicas de Cultivo de Célula , Diferenciación Celular , Metabolismo Energético , Humanos , Ratones , Mioblastos/citología , Mioblastos/metabolismo
13.
Curr Opin Cell Biol ; 33: 88-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25588618

RESUMEN

In the recent years there has been a tremendous increase in our understanding of chromatin, transcription and the importance of metabolites in their regulation. This review highlights what is currently sparse information that suggest existence of a refined system integrating metabolic and chromatin control. We indicate possible regulatory modes, such as feed forward amplification, that may help effect and stabilize long-lasting phenotypic decisions within and even across generations using adipogenesis as the primary context.


Asunto(s)
Epigénesis Genética , Metabolismo/genética , Adipocitos/citología , Adipocitos/metabolismo , Adipogénesis/genética , Animales , Cromatina/genética , Cromatina/metabolismo , Humanos
14.
Semin Cell Dev Biol ; 33: 81-92, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24862854

RESUMEN

Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, Hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease.


Asunto(s)
Proteínas Hedgehog/fisiología , Transducción de Señal , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético , Humanos , Hígado/metabolismo , Músculo Esquelético/metabolismo , Neoplasias/metabolismo , Páncreas/metabolismo
15.
Biochem Biophys Res Commun ; 362(4): 1007-12, 2007 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-17803965

RESUMEN

In type 2 diabetes (T2DM) beta-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3+/-3.8%) than ZF rats (48.8+/-22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0+/-17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Inhibidor Gástrico/administración & dosificación , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Receptores de la Hormona Gastrointestinal/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Resistencia a Medicamentos , Resistencia a la Insulina , Ratas , Ratas Zucker , Resultado del Tratamiento
16.
Diabetes ; 53(7): 1790-7, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15220203

RESUMEN

Glucocorticoids impair insulin sensitivity. Because insulin resistance is closely linked to increased incidence of cardiovascular diseases and given that metabolic abnormalities have been linked to initiation of heart failure, we examined the acute effects of dexamethasone (DEX) on rat cardiac metabolism. Although injection of DEX for 4 h was not associated with hyperinsulinemia, the euglycemic-hyperinsulinemic clamp showed a decrease in glucose infusion rate. Rates of cardiac glycolysis were unaffected, whereas the rate of glucose oxidation following DEX was significantly decreased and could be associated with augmented expression of PDK4 mRNA and protein. Myocardial glycogen content in DEX hearts increased compared with control. Similar to hypoinsulinemia induced by streptozotocin (STZ), hearts from insulin-resistant DEX animals also demonstrated enlargement of the coronary lipoprotein lipase (LPL) pool. However, unlike STZ, DEX hearts showed greater basal release of LPL and were able to maintain their high heparin-releasable LPL in vitro. This effect could be explained by the enhanced LPL mRNA expression following DEX. Our data provide evidence that in a setting of insulin resistance, an increase in LPL could facilitate increased delivery of fatty acid to the heart, leading to excessive triglyceride storage. It has not been determined whether these acute effects of DEX on cardiac metabolism can be translated into increased cardiovascular risk.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Dexametasona/administración & dosificación , Ácidos Grasos/metabolismo , Glucocorticoides/administración & dosificación , Resistencia a la Insulina , Miocardio/metabolismo , Animales , Vasos Coronarios/enzimología , Esquema de Medicación , Glucosa/metabolismo , Técnicas In Vitro , Insulina/sangre , Insulina/farmacología , Isoenzimas/metabolismo , Lipoproteína Lipasa/efectos de los fármacos , Lipoproteína Lipasa/metabolismo , Masculino , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ratas , Ratas Wistar , Estreptozocina/farmacología , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...