Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 185(13): 2309-2323.e24, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35662414

RESUMEN

The mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells. Using cryo-EM, we show that POLRMT dimerization is induced by interactions with 7S RNA. The resulting POLRMT dimer interface sequesters domains necessary for promoter recognition and unwinding, thereby preventing transcription initiation. We propose that the non-coding 7S RNA molecule is a component of a negative feedback loop that regulates mitochondrial transcription in mammalian cells.


Asunto(s)
ADN Mitocondrial , Proteínas Mitocondriales , Animales , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Dimerización , Humanos , Mamíferos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ARN/metabolismo , ARN Mitocondrial , ARN Citoplasmático Pequeño , Partícula de Reconocimiento de Señal , Transcripción Genética
2.
Nucleic Acids Res ; 50(2): 989-999, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35018464

RESUMEN

Human mitochondria lack ribonucleotide excision repair pathways, causing misincorporated ribonucleotides (rNMPs) to remain embedded in the mitochondrial genome. Previous studies have demonstrated that human mitochondrial DNA polymerase γ can bypass a single rNMP, but that longer stretches of rNMPs present an obstacle to mitochondrial DNA replication. Whether embedded rNMPs also affect mitochondrial transcription has not been addressed. Here we demonstrate that mitochondrial RNA polymerase elongation activity is affected by a single, embedded rNMP in the template strand. The effect is aggravated at stretches with two or more consecutive rNMPs in a row and cannot be overcome by addition of the mitochondrial transcription elongation factor TEFM. Our findings lead us to suggest that impaired transcription may be of functional relevance in genetic disorders associated with imbalanced nucleotide pools and higher levels of embedded rNMPs.


Asunto(s)
ADN Polimerasa gamma/metabolismo , ADN/metabolismo , Mitocondrias/genética , ARN Mitocondrial/metabolismo , Ribonucleótidos/metabolismo , Replicación del ADN , Escherichia coli/genética , Humanos
3.
Methods Enzymol ; 661: 1-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34776208

RESUMEN

The in vitro reconstitution of origin firing was a key step toward the biochemical reconstitution of eukaryotic DNA replication in budding yeast. Today the basic replication assay involves proteins purified from 24 separate protocols that have evolved since their first publication, and as a result, the efficiency and reliability of the in vitro replication system has improved. Here we will present protocols for all 24 purifications together with a general protocol for the in vitro replication assay and some tips for troubleshooting problems with the assay.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Origen de Réplica , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
Biochem J ; 478(13): 2405-2423, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198322

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health challenge. While the efficacy of vaccines against emerging and future virus variants remains unclear, there is a need for therapeutics. Repurposing existing drugs represents a promising and potentially rapid opportunity to find novel antivirals against SARS-CoV-2. The virus encodes at least nine enzymatic activities that are potential drug targets. Here, we have expressed, purified and developed enzymatic assays for SARS-CoV-2 nsp13 helicase, a viral replication protein that is essential for the coronavirus life cycle. We screened a custom chemical library of over 5000 previously characterized pharmaceuticals for nsp13 inhibitors using a fluorescence resonance energy transfer-based high-throughput screening approach. From this, we have identified FPA-124 and several suramin-related compounds as novel inhibitors of nsp13 helicase activity in vitro. We describe the efficacy of these drugs using assays we developed to monitor SARS-CoV-2 growth in Vero E6 cells.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Evaluación Preclínica de Medicamentos , ARN Helicasas/antagonistas & inhibidores , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Animales , Chlorocebus aethiops , Pruebas de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , ARN Helicasas/metabolismo , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Suramina/farmacología , Células Vero , Proteínas no Estructurales Virales/metabolismo
5.
Biochem J ; 478(13): 2425-2443, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34198323

RESUMEN

The coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication-transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologues in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified three novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.


Asunto(s)
Antivirales/química , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Benzoatos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Chlorocebus aethiops , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Pruebas de Enzimas , Transferencia Resonante de Energía de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Holoenzimas/metabolismo , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Suramina/farmacología , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo
6.
EMBO Rep ; 20(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31036713

RESUMEN

Regulation of replication and expression of mitochondrial DNA (mtDNA) is essential for cellular energy conversion via oxidative phosphorylation. The mitochondrial transcription elongation factor (TEFM) has been proposed to regulate the switch between transcription termination for replication primer formation and processive, near genome-length transcription for mtDNA gene expression. Here, we report that Tefm is essential for mouse embryogenesis and that levels of promoter-distal mitochondrial transcripts are drastically reduced in conditional Tefm-knockout hearts. In contrast, the promoter-proximal transcripts are much increased in Tefm knockout mice, but they mostly terminate before the region where the switch from transcription to replication occurs, and consequently, de novo mtDNA replication is profoundly reduced. Unexpectedly, deep sequencing of RNA from Tefm knockouts revealed accumulation of unprocessed transcripts in addition to defective transcription elongation. Furthermore, a proximity-labeling (BioID) assay showed that TEFM interacts with multiple RNA processing factors. Our data demonstrate that TEFM acts as a general transcription elongation factor, necessary for both gene transcription and replication primer formation, and loss of TEFM affects RNA processing in mammalian mitochondria.


Asunto(s)
Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Postranscripcional del ARN , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Animales , ADN Mitocondrial , Desarrollo Embrionario/genética , Eliminación de Gen , Regulación de la Expresión Génica , Sitios Genéticos , Heterocigoto , Ratones , Ratones Noqueados , Mitocondrias/ultraestructura , Fenotipo , Regiones Promotoras Genéticas
7.
PLoS Genet ; 15(1): e1007781, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30605451

RESUMEN

Human mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors. The majority of all transcription events from LSP are prematurely terminated after ~120 nucleotides, forming stable R-loops. These nascent R-loops cannot directly prime mtDNA synthesis, but must first be processed by RNase H1 to generate 3'-ends that can be used by DNA polymerase γ to initiate DNA synthesis. Our findings are consistent with recent studies of a knockout mouse model, which demonstrated that RNase H1 is required for R-loop processing and mtDNA maintenance in vivo. Both R-loop formation and DNA replication initiation are stimulated by the mitochondrial single-stranded DNA binding protein. In an RNase H1 deficient patient cell line, the precise initiation of mtDNA replication is lost and DNA synthesis is initiated from multiple sites throughout the mitochondrial control region. In combination with previously published in vivo data, the findings presented here suggest a model, in which R-loop processing by RNase H1 directs origin-specific initiation of DNA replication in human mitochondria.


Asunto(s)
Replicación del ADN/genética , ADN Mitocondrial/biosíntesis , Mitocondrias/genética , Ribonucleasa H/genética , Animales , ADN Polimerasa gamma/genética , ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , Humanos , Ratones , Origen de Réplica/genética
8.
PLoS Genet ; 13(3): e1006620, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28267784

RESUMEN

Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe, tRNALeu1 and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Renales/genética , Túbulos Renales/patología , Mutación , Acetilglucosaminidasa/orina , Biopsia , Femenino , Fibroblastos/metabolismo , Ligamiento Genético , Humanos , Leucina/química , Masculino , Mitocondrias/metabolismo , Consumo de Oxígeno , Linaje , Fenotipo , Fenilalanina/química , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Músculo Cuádriceps/patología , ARN de Transferencia/genética
9.
J Biol Chem ; 292(7): 2637-2645, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28028173

RESUMEN

The mitochondrial transcription initiation machinery in humans consists of three proteins: the RNA polymerase (POLRMT) and two accessory factors, transcription factors A and B2 (TFAM and TFB2M, respectively). This machinery is required for the expression of mitochondrial DNA and the biogenesis of the oxidative phosphorylation system. Previous experiments suggested that TFB2M is required for promoter melting, but conclusive experimental proof for this effect has not been presented. Moreover, the role of TFB2M in promoter unwinding has not been discriminated from that of TFAM. Here we used potassium permanganate footprinting, DNase I footprinting, and in vitro transcription from the mitochondrial light-strand promoter to study the role of TFB2M in transcription initiation. We demonstrate that a complex composed of TFAM and POLRMT was readily formed at the promoter but alone was insufficient for promoter melting, which only occurred when TFB2M joined the complex. We also show that mismatch bubble templates could circumvent the requirement of TFB2M, but TFAM was still required for efficient initiation. Our findings support a model in which TFAM first recruits POLRMT to the promoter, followed by TFB2M binding and induction of promoter melting.


Asunto(s)
Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética , Huella de ADN , Humanos , Fosforilación
10.
Sci Adv ; 2(8): e1600963, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27532055

RESUMEN

Mitochondria are vital in providing cellular energy via their oxidative phosphorylation system, which requires the coordinated expression of genes encoded by both the nuclear and mitochondrial genomes (mtDNA). Transcription of the circular mammalian mtDNA depends on a single mitochondrial RNA polymerase (POLRMT). Although the transcription initiation process is well understood, it is debated whether POLRMT also serves as the primase for the initiation of mtDNA replication. In the nucleus, the RNA polymerases needed for gene expression have no such role. Conditional knockout of Polrmt in the heart results in severe mitochondrial dysfunction causing dilated cardiomyopathy in young mice. We further studied the molecular consequences of different expression levels of POLRMT and found that POLRMT is essential for primer synthesis to initiate mtDNA replication in vivo. Furthermore, transcription initiation for primer formation has priority over gene expression. Surprisingly, mitochondrial transcription factor A (TFAM) exists in an mtDNA-free pool in the Polrmt knockout mice. TFAM levels remain unchanged despite strong mtDNA depletion, and TFAM is thus protected from degradation of the AAA(+) Lon protease in the absence of POLRMT. Last, we report that mitochondrial transcription elongation factor may compensate for a partial depletion of POLRMT in heterozygous Polrmt knockout mice, indicating a direct regulatory role of this factor in transcription. In conclusion, we present in vivo evidence that POLRMT has a key regulatory role in the replication of mammalian mtDNA and is part of a transcriptional mechanism that provides a switch between primer formation for mtDNA replication and mitochondrial gene expression.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Transcripción Genética , Animales , Replicación del ADN/genética , Regulación de la Expresión Génica , Genoma Mitocondrial , Ratones
11.
Nucleic Acids Res ; 44(12): 5732-42, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27112570

RESUMEN

During replication of nuclear ribosomal DNA (rDNA), clashes with the transcription apparatus can cause replication fork collapse and genomic instability. To avoid this problem, a replication fork barrier protein is situated downstream of rDNA, there preventing replication in the direction opposite rDNA transcription. A potential candidate for a similar function in mitochondria is the mitochondrial transcription termination factor 1 (MTERF1, also denoted mTERF), which binds to a sequence just downstream of the ribosomal transcription unit. Previous studies have shown that MTERF1 prevents antisense transcription over the ribosomal RNA genes, a process which we here show to be independent of the transcription elongation factor TEFM. Importantly, we now demonstrate that MTERF1 arrests mitochondrial DNA (mtDNA) replication with distinct polarity. The effect is explained by the ability of MTERF1 to act as a directional contrahelicase, blocking mtDNA unwinding by the mitochondrial helicase TWINKLE. This conclusion is also supported by in vivo evidence that MTERF1 stimulates TWINKLE pausing. We conclude that MTERF1 can direct polar replication fork arrest in mammalian mitochondria.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , ADN Helicasas/genética , Replicación del ADN , ADN Mitocondrial/genética , ADN Ribosómico/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , ADN Ribosómico/metabolismo , Células HEK293 , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
12.
Proc Natl Acad Sci U S A ; 112(36): 11288-93, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26305956

RESUMEN

Mammalian mitochondrial DNA (mtDNA) is packaged by mitochondrial transcription factor A (TFAM) into mitochondrial nucleoids that are of key importance in controlling the transmission and expression of mtDNA. Nucleoid ultrastructure is poorly defined, and therefore we used a combination of biochemistry, superresolution microscopy, and electron microscopy to show that mitochondrial nucleoids have an irregular ellipsoidal shape and typically contain a single copy of mtDNA. Rotary shadowing electron microscopy revealed that nucleoid formation in vitro is a multistep process initiated by TFAM aggregation and cross-strand binding. Superresolution microscopy of cultivated cells showed that increased mtDNA copy number increases nucleoid numbers without altering their sizes. Electron cryo-tomography visualized nucleoids at high resolution in isolated mammalian mitochondria and confirmed the sizes observed by superresolution microscopy of cell lines. We conclude that the fundamental organizational unit of the mitochondrial nucleoid is a single copy of mtDNA compacted by TFAM, and we suggest a packaging mechanism.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Mitocondrias/metabolismo , Nucleoproteínas/metabolismo , Animales , Células Cultivadas , Microscopía por Crioelectrón , ADN Mitocondrial/genética , ADN Mitocondrial/ultraestructura , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Tomografía con Microscopio Electrónico , Genoma Mitocondrial/genética , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/ultraestructura , Ratones , Microscopía Confocal , Mitocondrias/genética , Mitocondrias/ultraestructura , Mutación , Nucleoproteínas/genética , Nucleoproteínas/ultraestructura , Unión Proteica
13.
Nucleic Acids Res ; 43(5): 2615-24, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25690892

RESUMEN

A single-subunit RNA polymerase, POLRMT, transcribes the mitochondrial genome in human cells. Recently, a factor termed as the mitochondrial transcription elongation factor, TEFM, was shown to stimulate transcription elongation in vivo, but its effect in vitro was relatively modest. In the current work, we have isolated active TEFM in recombinant form and used a reconstituted in vitro transcription system to characterize its activities. We show that TEFM strongly promotes POLRMT processivity as it dramatically stimulates the formation of longer transcripts. TEFM also abolishes premature transcription termination at conserved sequence block II, an event that has been linked to primer formation during initiation of mtDNA synthesis. We show that POLRMT pauses at a wide range of sites in a given DNA sequence. In the absence of TEFM, this leads to termination; however, the presence of TEFM abolishes this effect and aids POLRMT in continuation of transcription. Further, we show that TEFM substantially increases the POLRMT affinity to an elongation-like DNA:RNA template. In combination with previously published in vivo observations, our data establish TEFM as an essential component of the mitochondrial transcription machinery.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , 8-Hidroxi-2'-Desoxicoguanosina , Sistema Libre de Células , ADN/genética , ADN/metabolismo , Daño del ADN , ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/genética , Desoxiguanosina/metabolismo , Genoma Mitocondrial/genética , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Modelos Genéticos , Unión Proteica , Proteínas Recombinantes/metabolismo , Moldes Genéticos , Factores de Transcripción/genética
14.
Nucleic Acids Res ; 42(6): 3638-47, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24445803

RESUMEN

Mammalian mitochondrial transcription is executed by a single subunit mitochondrial RNA polymerase (Polrmt) and its two accessory factors, mitochondrial transcription factors A and B2 (Tfam and Tfb2m). Polrmt is structurally related to single-subunit phage RNA polymerases, but it also contains a unique N-terminal extension (NTE) of unknown function. We here demonstrate that the NTE functions together with Tfam to ensure promoter-specific transcription. When the NTE is deleted, Polrmt can initiate transcription in the absence of Tfam, both from promoters and non-specific DNA sequences. Additionally, when in presence of Tfam and a mitochondrial promoter, the NTE-deleted mutant has an even higher transcription activity than wild-type polymerase, indicating that the NTE functions as an inhibitory domain. Our studies lead to a model according to which Tfam specifically recruits wild-type Polrmt to promoter sequences, relieving the inhibitory effect of the NTE, as a first step in transcription initiation. In the second step, Tfb2m is recruited into the complex and transcription is initiated.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Iniciación de la Transcripción Genética , Animales , Proteínas de Unión al ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Metiltransferasas/metabolismo , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Mutación , Estructura Terciaria de Proteína , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...