Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Eng ; 81: 157-166, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081506

RESUMEN

Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.


Asunto(s)
Sulfatasas , Humanos , Sulfatasas/genética , Sulfatasas/metabolismo
2.
iScience ; 24(3): 102154, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33665572

RESUMEN

We show the successful application of ancestral sequence reconstruction to enhance the activity of iduronate-2-sulfatase (IDS), thereby increasing its therapeutic potential for the treatment of Hunter syndrome-a lysosomal storage disease caused by impaired function of IDS. Current treatment, enzyme replacement therapy with recombinant human IDS, does not alleviate all symptoms, and an unmet medical need remains. We reconstructed putative ancestral sequences of mammalian IDS and compared them with extant IDS. Some ancestral variants displayed up to 2-fold higher activity than human IDS in in vitro assays and cleared more substrate in ex vivo experiments in patient fibroblasts. This could potentially allow for lower dosage or enhanced therapeutic effect in enzyme replacement therapy, thereby improving treatment outcomes and cost efficiency, as well as reducing treatment burden. In summary, we showed that ancestral sequence reconstruction can be applied to lysosomal enzymes that function in concert with modern enzymes and receptors in cells.

3.
PLoS One ; 10(8): e0136239, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26296208

RESUMEN

In the yeast Saccharomyces cerevisiae, members of the Kre2/Mnt1 protein family have been shown to be α-1,2-mannosyltransferases or α-1,2-mannosylphosphate transferases, utilising an Mn2+-coordinated GDP-mannose as the sugar donor and a variety of mannose derivatives as acceptors. Enzymes in this family are localised to the Golgi apparatus, and have been shown to be involved in both N- and O-linked glycosylation of newly-synthesised proteins, including cell wall glycoproteins. Our knowledge of the nine proteins in this family is however very incomplete at present. Only one family member, Kre2p/Mnt1p, has been studied by structural methods, and three (Ktr4p, Ktr5p, Ktr7p) are completely uncharacterised and remain classified only as putative glycosyltransferases. Here we use in vitro enzyme activity assays to provide experimental confirmation of the predicted glycosyltransferase activity of Ktr4p. Using GDP-mannose as the donor, we observe activity towards the acceptor methyl-α-mannoside, but little or no activity towards mannose or α-1,2-mannobiose. We also present the structure of the lumenal catalytic domain of S. cerevisiae Ktr4p, determined by X-ray crystallography to a resolution of 2.2 Å, and the complex of the enzyme with GDP to 1.9 Å resolution.


Asunto(s)
Pared Celular/química , Aparato de Golgi/química , Guanosina Difosfato Manosa/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Factores de Transcripción/química , Secuencias de Aminoácidos , Catálisis , Dominio Catalítico , Pared Celular/enzimología , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Aparato de Golgi/enzimología , Cinética , Mananos/química , Metilmanósidos/química , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Factores de Transcripción/genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-23695573

RESUMEN

The membrane protein Erv41p is a major component of COPII-coated vesicles and is thought to play a role in the early secretory pathway in eukaryotic cells. In this study, the full lumenal domain of Erv41p from Saccharomyces cerevisiae (ScErv41p_LD) was recombinantly expressed in Sf9 insect cells and purified by nickel-affinity, ion-exchange and size-exclusion chromatography. ScErv41p_LD crystals were obtained using the sitting-drop vapour-diffusion method and native X-ray diffraction data were collected to 2.0 Šresolution. The crystals belonged to space group P21, with unit-cell parameters a = 49.8, b = 76.9, c = 65.1 Å, α = γ = 90.0, ß = 104.8°.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana/química , Proteínas de la Membrana/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Saccharomyces cerevisiae , Cristalización , Cristalografía por Rayos X , Retículo Endoplásmico/química , Estructura Terciaria de Proteína , Difracción de Rayos X
5.
J Mol Biol ; 425(12): 2208-18, 2013 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-23524136

RESUMEN

Erv41p is a conserved integral membrane protein that is known to play a role in transport between the endoplasmic reticulum and Golgi apparatus, part of the early secretory pathway of eukaryotes. However, the exact function of the protein is not known, and it shares very low sequence identity with proteins of known structure or function. Here we present the structure of the full lumenal domain of Erv41p from Saccharomyces cerevisiae, determined by X-ray crystallography to a resolution of 2.0Å. The structure reveals the protein to be composed predominantly of two large ß-sheets that form a twisted ß-sandwich. Comparison to structures in the Protein Data Bank shows that the Erv41p lumenal domain displays only limited similarity to ß-sandwich domains of other proteins. Analysis of the surface properties of the protein identifies an extensive patch of negative electrostatic potential on the exposed surface of one of the ß-sheets, which likely forms a binding site for a ligand or interaction partner. A predominantly hydrophobic region close to the membrane interface is identified as a likely site for protein-protein interaction. This structure, the first of Erv41p or any of its homologues, provides a new starting point for studies of the roles of Erv41p and its interaction partners in the eukaryotic secretory pathway.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA