Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Talanta ; 275: 126062, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38615457

RESUMEN

Neonatal respiratory distress syndrome (nRDS) is a challenging condition to diagnose which can lead to delays in receiving appropriate treatment. Mid infrared (IR) spectroscopy is capable of measuring the concentrations of two diagnostic nRDS biomarkers, lecithin (L) and sphingomyelin (S) with the potential for point of care (POC) diagnosis and monitoring. The effects of varying other lipid species present in lung surfactant on the mid IR spectra used to train machine learning models are explored. This study presents a lung lipid model of five lipids present in lung surfactant and varies each in a systematic approach to evaluate the ability of machine learning models to predict the lipid concentrations, the L/S ratio and to quantify the uncertainty in the predictions using the jackknife + -after-bootstrap and variant bootstrap methods. We establish the L/S ratio can be determined with an uncertainty of approximately ±0.3 mol/mol and we further identify the 5 most prominent wavenumbers associated with each machine learning model.

2.
Cells ; 13(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38391944

RESUMEN

Mammalian cell membranes composed of a mixture of glycerophospholipids, the relative composition of individual phospholipids and the dynamic flux vary between cells. In addition to their structural role, membrane phospholipids are involved in cellular signalling and immunomodulatory functions. In this study, we investigate the molecular membrane composition and dynamic flux of phosphatidylcholines in CD15+ leucocytes and CD3+ lymphocytes extracted from patients with acute respiratory distress syndrome (ARDS). We identified compositional variations between these cell types, where CD15+ cells had relatively higher quantities of alkyl-acyl PC species and CD3+ cells contained more arachidonoyl-PC species. There was a significant loss of arachidonoyl-PC in CD3+ cells in ARDS patients. Moreover, there were significant changes in PC composition and the methyl-D9 enrichment of individual molecular species in CD15+ cells from ARDS patients. This is the first study to perform an in vivo assessment of membrane composition and dynamic changes in immunological cells from ARDS patients.


Asunto(s)
Fosfatidilcolinas , Síndrome de Dificultad Respiratoria , Adulto , Humanos , Leucocitos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Linfocitos T/metabolismo
3.
Tissue Barriers ; : 2300580, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38179897

RESUMEN

Lipids and their mediators have important regulatory functions in many cellular processes, including the innate antiviral response. The aim of this study was to compare the lipid membrane composition of in vitro differentiated primary bronchial epithelial cells (PBECs) with ex vivo bronchial brushings and to establish whether any changes in the lipid membrane composition affect antiviral defense of cells from donors without and with severe asthma. Using mass spectrometry, we showed that the lipid membrane of in vitro differentiated PBECs was deprived of polyunsaturated fatty acids (PUFAs) compared to ex vivo bronchial brushings. Supplementation of the culture medium with arachidonic acid (AA) increased the PUFA-content to more closely match the ex vivo membrane profile. Rhinovirus (RV16) infection of AA-supplemented cultures from healthy donors resulted in significantly reduced viral replication while release of inflammatory mediators and prostaglandin E2 (PGE2) was significantly increased. Indomethacin, an inhibitor of prostaglandin-endoperoxide synthases, suppressed RV16-induced PGE2 release and significantly reduced CXCL-8/IL-8 release from AA-supplemented cultures indicating a link between PGE2 and CXCL8/IL-8 release. In contrast, in AA-supplemented cultures from severe asthmatic donors, viral replication was enhanced whereas PTGS2 expression and PGE2 release were unchanged and CXCL8/IL-8 was significantly reduced in response to RV16 infection. While the PTGS2/COX-2 pathway is initially pro-inflammatory, its downstream products can promote symptom resolution. Thus, reduced PGE2 release during an RV-induced severe asthma exacerbation may lead to prolonged symptoms and slower recovery. Our data highlight the importance of reflecting the in vivo lipid profile in in vitro cell cultures for mechanistic studies.

4.
Sci Rep ; 13(1): 20946, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017061

RESUMEN

SARS-CoV-2 directly targets alveolar epithelial cells and can lead to surfactant deficiency. Early reports suggested surfactant replacement may be effective in improving outcomes. The aim of the study to assess the feasibility and efficacy of nebulized surfactant in mechanically ventilated COVID-19 patients. Patients were randomly assigned to receive open-labelled bovine nebulized surfactant or control (ratio 3-surfactant: 2-control). This was an exploratory dose-response study starting with 1080 mg of surfactant delivered at 3 time points (0, 8 and 24 h). After completion of 10 patients, the dose was reduced to 540 mg, and the frequency of nebulization was increased to 5/6 time points (0, 12, 24, 36, 48, and an optional 72 h) on the advice of the Trial Steering Committee. The co-primary outcomes were improvement in oxygenation (change in PaO2/FiO2 ratio) and ventilation index at 48 h. 20 patients were recruited (12 surfactant and 8 controls). Demographic and clinical characteristics were similar between groups at presentation. Nebulized surfactant administration was feasible. There was no significant improvement in oxygenation at 48 h overall. There were also no differences in secondary outcomes or adverse events. Nebulized surfactant administration is feasible in mechanically ventilated patients with COVID-19 but did not improve measures of oxygenation or ventilation.


Asunto(s)
COVID-19 , Surfactantes Pulmonares , Adulto , Humanos , Surfactantes Pulmonares/uso terapéutico , SARS-CoV-2 , Tensoactivos
5.
Med Sci (Basel) ; 11(4)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37987325

RESUMEN

Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.


Asunto(s)
COVID-19 , Hiperoxia , Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2 , Enfermedad Crítica , Hiperoxia/complicaciones , Oxígeno , Hipoxia , Inflamación
6.
Diagnostics (Basel) ; 13(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37761330

RESUMEN

Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults, leading to the requirement for mechanical ventilation and poorer outcomes. Dysregulated surfactant metabolism and function are characteristic of ARDS. A combination of alveolar epithelial damage leading to altered surfactant synthesis, secretion, and breakdown with increased functional inhibition from overt alveolar inflammation contributes to the clinical features of poor alveolar compliance and alveolar collapse. Quantitative and qualitative alterations in the bronchoalveolar lavage and tracheal aspirate surfactant composition contribute to ARDS pathogenesis. Compared to neonatal respiratory distress syndrome (nRDS), replacement studies of exogenous surfactants in adult ARDS suggest no survival benefit. However, these studies are limited by disease heterogeneity, variations in surfactant preparations, doses, and delivery methods. More importantly, the lack of mechanistic understanding of the exact reasons for dysregulated surfactant remains a significant issue. Moreover, studies suggest an extremely short half-life of replaced surfactant, implying increased catabolism. Refining surfactant preparations and delivery methods with additional co-interventions to counteract surfactant inhibition and degradation has the potential to enhance the biophysical characteristics of surfactant in vivo.

7.
ERJ Open Res ; 9(3)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37228288

RESUMEN

Rationale: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms. Methods: Bronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass spectrometry. Serum surfactant protein analysis was performed. Results: Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, surfactant protein (SP)-B, SP-A and SP-D concentrations were lower in COPD versus controls (log2 fold change (log2FC) -2.0, -2.2, -1.5, -0.5, -0.7 and -0.5 (adjusted p<0.02), respectively) and correlated with lung function. Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D, napsin A and CD44 inversely correlated with computed tomography small airways disease measures (expiratory to inspiratory mean lung density) (r= -0.56, r= -0.58, r= -0.45, r= -0.36, r= -0.44, r= -0.37, r= -0.40 and r= -0.39 (adjusted p<0.05)). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D and NAPSA inversely correlated with emphysema (% low-attenuation areas): r= -0.55, r= -0.61, r= -0.48, r= -0.51, r= -0.41, r= -0.31 and r= -0.34, respectively (adjusted p<0.05). Neutrophil elastase, known to degrade SP-A and SP-D, was elevated in COPD versus controls (log2FC 0.40, adjusted p=0.0390), and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD versus healthy ex-smoking volunteers, and predicted COPD status (area under the curve 0.85). Conclusions: Using a multiomics approach, we demonstrate, for the first time, global surfactant dysregulation in COPD that was associated with emphysema, giving new insights into potential mechanisms underlying the cause or consequence of disease.

8.
J Allergy Clin Immunol ; 152(1): 117-125, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36918039

RESUMEN

BACKGROUND: Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE: We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS: Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS: Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION: We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.


Asunto(s)
Asma , Esputo , Humanos , Esputo/metabolismo , Lipidómica , Proteómica/métodos , Estudios Transversales , Estudios Prospectivos , Lípidos
9.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35270894

RESUMEN

The authors of this study developed the use of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) combined with machine learning as a point-of-care (POC) diagnostic platform, considering neonatal respiratory distress syndrome (nRDS), for which no POC currently exists, as an example. nRDS can be diagnosed by a ratio of less than 2.2 of two nRDS biomarkers, lecithin and sphingomyelin (L/S ratio), and in this study, ATR-FTIR spectra were recorded from L/S ratios of between 1.0 and 3.4, which were generated using purified reagents. The calibration of principal component (PCR) and partial least squares (PLSR) regression models was performed using 155 raw baselined and second derivative spectra prior to predicting the concentration of a further 104 spectra. A three-factor PLSR model of second derivative spectra best predicted L/S ratios across the full range (R2: 0.967; MSE: 0.014). The L/S ratios from 1.0 to 3.4 were predicted with a prediction interval of +0.29, -0.37 when using a second derivative spectra PLSR model and had a mean prediction interval of +0.26, -0.34 around the L/S 2.2 region. These results support the validity of combining ATR-FTIR with machine learning to develop a point-of-care device for detecting and quantifying any biomarker with an interpretable mid-infrared spectrum.


Asunto(s)
Aprendizaje Automático , Síndrome de Dificultad Respiratoria del Recién Nacido , Biomarcadores , Humanos , Recién Nacido , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja por Transformada de Fourier/métodos
11.
Clin Sci (Lond) ; 135(22): 2559-2573, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34778899

RESUMEN

Granulocyte macrophage colony stimulating factor (GM-CSF) is a key participant in, and a clinical target for, the treatment of inflammatory diseases including rheumatoid arthritis (RA). Therapeutic inhibition of GM-CSF signalling using monoclonal antibodies to the α-subunit of the GM-CSF receptor (GMCSFRα) has shown clear benefit in patients with RA, giant cell arteritis (GCAs) and some efficacy in severe SARS-CoV-2 infection. However, GM-CSF autoantibodies are associated with the development of pulmonary alveolar proteinosis (PAP), a rare lung disease characterised by alveolar macrophage (AM) dysfunction and the accumulation of surfactant lipids. We assessed how the anti-GMCSFRα approach might impact surfactant turnover in the airway. Female C57BL/6J mice received a mouse-GMCSFRα blocking antibody (CAM-3003) twice per week for up to 24 weeks. A parallel, comparator cohort of the mouse PAP model, GM-CSF receptor ß subunit (GMCSFRß) knock-out (KO), was maintained up to 16 weeks. We assessed lung tissue histopathology alongside lung phosphatidylcholine (PC) metabolism using stable isotope lipidomics. GMCSFRß KO mice reproduced the histopathological and biochemical features of PAP, accumulating surfactant PC in both broncho-alveolar lavage fluid (BALF) and lavaged lung tissue. The incorporation pattern of methyl-D9-choline showed impaired catabolism and not enhanced synthesis. In contrast, chronic supra-pharmacological CAM-3003 exposure (100 mg/kg) over 24 weeks did not elicit a histopathological PAP phenotype despite some changes in lung PC catabolism. Lack of significant impairment of AM catabolic function supports clinical observations that therapeutic antibodies to this pathway have not been associated with PAP in clinical trials.


Asunto(s)
Artritis Reumatoide/metabolismo , COVID-19/terapia , Proteinosis Alveolar Pulmonar/inmunología , Surfactantes Pulmonares/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Artritis Reumatoide/terapia , Autoanticuerpos/química , Líquido del Lavado Bronquioalveolar , COVID-19/inmunología , Colina/análogos & derivados , Femenino , Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Inflamación , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Proteinosis Alveolar Pulmonar/genética , SARS-CoV-2/inmunología , Tensoactivos
12.
Cells ; 10(4)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918094

RESUMEN

Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disease with significant neurological and skeletal pathologies. Respiratory dysfunction is a secondary pathology contributing to mortality in MPS IIIA patients. Pulmonary surfactant is crucial to optimal lung function and has not been investigated in MPS IIIA. We measured heparan sulphate (HS), lipids and surfactant proteins (SP) in pulmonary tissue and bronchoalveolar lavage fluid (BALF), and surfactant activity in healthy and diseased mice (20 weeks of age). Heparan sulphate, ganglioside GM3 and bis(monoacylglycero)phosphate (BMP) were increased in MPS IIIA lung tissue. There was an increase in HS and a decrease in BMP and cholesteryl esters (CE) in MPS IIIA BALF. Phospholipid composition remained unchanged, but BALF total phospholipids were reduced (49.70%) in MPS IIIA. There was a reduction in SP-A, -C and -D mRNA, SP-D protein in tissue and SP-A, -C and -D protein in BALF of MPS IIIA mice. Captive bubble surfactometry showed an increase in minimum and maximum surface tension and percent surface area compression, as well as a higher compressibility and hysteresis in MPS IIIA surfactant upon dynamic cycling. Collectively these biochemical and biophysical changes in alveolar surfactant are likely to be detrimental to lung function in MPS IIIA.


Asunto(s)
Heparitina Sulfato/metabolismo , Mucopolisacaridosis III/metabolismo , Alveolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo , Animales , Fenómenos Biofísicos , Líquido del Lavado Bronquioalveolar , Colesterol/metabolismo , Cromatografía Liquida , Gangliósido G(M3)/metabolismo , Regulación de la Expresión Génica , Lisofosfolípidos/metabolismo , Ratones Endogámicos C57BL , Monoglicéridos/metabolismo , Fosfolípidos/metabolismo , Estándares de Referencia , Espectrometría de Masas en Tándem
13.
J Lipid Res ; 62: 100023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33453219

RESUMEN

Mass spectrometry imaging (MSI) visualizes molecular distributions throughout tissues but is blind to dynamic metabolic processes. Here, MSI with high mass resolution together with multiple stable isotope labeling provided spatial analyses of phosphatidylcholine (PC) metabolism in mouse lungs. Dysregulated surfactant metabolism is central to many respiratory diseases. Metabolism and turnover of therapeutic pulmonary surfactants were imaged from distributions of intact and metabolic products of an added tracer, universally 13C-labeled dipalmitoyl PC (U13C-DPPC). The parenchymal distributions of newly synthesized PC species were also imaged from incorporations of methyl-D9-choline. This dual labeling strategy demonstrated both lack of inhibition of endogenous PC synthesis by exogenous surfactant and location of acyl chain remodeling processes acting on the U13C-DPPC-labeled surfactant, leading to formation of polyunsaturated PC lipids. This ability to visualize discrete metabolic events will greatly enhance our understanding of lipid metabolism in diverse tissues and has potential application to both clinical and experimental studies.


Asunto(s)
Tensoactivos
14.
Am J Clin Nutr ; 112(6): 1438-1447, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778895

RESUMEN

BACKGROUND: Lipid metabolism in pregnancy delivers PUFAs from maternal liver to the developing fetus. The transition at birth to diets less enriched in PUFA is especially challenging for immature, extremely preterm infants who are typically supported by total parenteral nutrition. OBJECTIVE: The aim was to characterize phosphatidylcholine (PC) and choline metabolism in preterm infants and demonstrate the molecular specificity of PC synthesis by the immature preterm liver in vivo. METHODS: This MS-based lipidomic study quantified the postnatal adaptations to plasma PC molecular composition in 31 preterm infants <28 weeks' gestational age. Activities of the cytidine diphosphocholine (CDP-choline) and phosphatidylethanolamine-N-methyltransferase (PEMT) pathways for PC synthesis were assessed from incorporations of deuterated methyl-D9-choline chloride. RESULTS: The concentration of plasma PC in these infants increased postnatally from median values of 481 (IQR: 387-798) µM at enrollment to 1046 (IQR: 616-1220) µM 5 d later (P < 0.001). Direct incorporation of methyl-D9-choline demonstrated that this transition was driven by an active CDP-choline pathway that synthesized PC enriched in species containing oleic and linoleic acids. A second infusion of methyl-D9-choline chloride at day 5 clearly indicated continued activity of this pathway. Oxidation of D9-choline through D9-betaine resulted in the transfer of 1 deuterated methyl group to S-adenosylmethionine. A very low subsequent transfer of this labeled methyl group to D3-PC indicated that liver PEMT activity was essentially inactive in these infants. CONCLUSIONS: This study demonstrated that the preterm infant liver soon after birth, and by extension the fetal liver, was metabolically active in lipoprotein metabolism. The low PEMT activity, which is the only pathway for endogenous choline synthesis and is responsible for hormonally regulated export of PUFAs from adult liver, strongly supports increased supplementation of preterm parenteral nutrition with both choline and PUFAs.


Asunto(s)
Adaptación Fisiológica , Colina/metabolismo , Ácidos Grasos Insaturados/metabolismo , Recien Nacido Extremadamente Prematuro/metabolismo , Fosfatidilcolinas/metabolismo , Estudios de Cohortes , Femenino , Humanos , Recién Nacido , Marcaje Isotópico , Masculino , Fosfatidilcolinas/sangre
15.
J Appl Lab Med ; 5(1): 101-113, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704895

RESUMEN

BACKGROUND: Systemic inflammation is a marker of ill health and has prognostic implications in multiple health settings. Urinary neopterin is an excellent candidate as a nonspecific marker of systemic inflammation. Expression as urinary neopterin-to-creatinine ratio (UNCR) normalizes for urinary hydration status. Major attractions include (a) urine vs blood sampling, (b) integration of inflammation over a longer period compared with serum sampling, and (c) high stability of neopterin and creatinine. METHODS: A high-throughput ultraperformance LC-MS method was developed to measure neopterin and creatinine together from the same urine sample. The assay was applied in several clinical scenarios: healthy controls, symptomatic infections, and multiple sclerosis. Area under the curve was compared between weekly and monthly sampling scenarios. Analysis of a single pooled sample was compared with averaging results from analysis of individual samples. RESULTS: The assay has excellent intraassay and interassay precision, linearity of dilution, and spike and recovery. Higher UNCR was demonstrated in female vs male individuals, older age, inflammatory disease (multiple sclerosis), and symptomatic infections. In healthy controls, fluctuations in inflammatory state also occurred in the absence of symptomatic infection or other inflammatory triggers. Analysis of a single pooled sample, made up from weekly urine samples, integrates inflammatory activity over time. CONCLUSIONS: UNCR is a useful biomarker of systemic inflammation. The method presented offers simplicity, speed, robustness, reproducibility, efficiency, and proven utility in clinical scenarios. UNCR fluctuations underline the importance of longitudinal monitoring, vs a single time point, to capture a more representative estimate of an individual's inflammatory state over time.


Asunto(s)
Creatinina/orina , Infecciones/orina , Inflamación/orina , Esclerosis Múltiple/orina , Neopterin/orina , Anciano , Área Bajo la Curva , Biomarcadores/orina , Femenino , Humanos , Infecciones/diagnóstico , Masculino , Esclerosis Múltiple/diagnóstico , Pronóstico , Reproducibilidad de los Resultados , Resultado del Tratamiento
16.
PLoS One ; 14(8): e0221595, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31454387

RESUMEN

Although the distribution of cellular membrane phospholipid composition is well characterised in human erythrocytes, in-vivo turnover and dynamic flux of phospholipids between plasma and erythrocytes in physiological and in particular during disease states are mostly unknown. Erythrocyte mass primarily consisted of lipids and phosphatidylcholine (PC) contributes to the significant proportion of phospholipid membrane composition. Esterified membrane PC can be utilised during pathological processes to generate pro and anti-inflammatory lipid mediators, which can contribute to the pathogenesis of acute respiratory distress syndrome (ARDS). In this study, utilising isotope labelling of choline and analytical methods with electrospray mass spectrometry (ESI-MS/MS), we characterised individual molecular composition and dynamic exchange of PC, sphingomyelins (SM) and lysophosphatidylcholines (LPC) between plasma and erythrocytes. In ARDS patients, there were significant alterations in PC molecular composition, coupled with a continuous loss of arachidonoyl-PC species over time. Infusion of methyl-D9-choline chloride resulted in enrichment of labelled choline into plasma PC and LPC via CDP-choline pathway with subsequent incorporation into erythrocyte PC. As expected, erythrocyte methyl-D9 PC enrichment is much slower than plasma. Patients had much faster and higher fractional enrichment of all PC and LPC molecules suggesting increased flux between plasma and erythrocytes. There was a particular pattern of incorporation, where the arachidonoyl-PC species achieved equilibrium with plasma rapidly and retained highest concentrations of enrichment compared to the other PC species. Increased enrichment of arachidonoyl-PC coupled with virtually no increase or depletion of its concentrations suggests the possibility of substrate donation for other cell types for the participation of eicosanoid biosynthesis during inflammatory conditions like ARDS. In summary, this study revealed an alerted pattern erythrocyte molecular phospholipid composition and flux in patients with acute respiratory distress syndrome and the pathological consequences of these changes needs further exploration.


Asunto(s)
Eritrocitos/metabolismo , Fosfolípidos/metabolismo , Síndrome de Dificultad Respiratoria/sangre , Síndrome de Dificultad Respiratoria/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Colina/metabolismo , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Acta Paediatr ; 108(5): 870-876, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30375054

RESUMEN

AIM: Sepsis is multifactorial and potentially devastating for preterm neonates. Changes in surfactant protein-D (SP-D), phosphatidylcholine (PC) and PC molecular species during infection may indicate innate immunity or inflammation during sepsis. We aimed to compare these important pulmonary molecules in ventilated neonates without or with sepsis. METHODS: Endotracheal aspirates were collected from preterm neonates born at 23-35 weeks and admitted to the neonatal intensive care unit at the John Radcliffe Hospital, Oxford, UK, from October 2000 to March 2002. Samples were collected at one day to 30 days and analysed for SP-D, total PC and PC molecular species concentrations using enzyme-linked immunosorbent assay and mass spectrometry. RESULTS: We found that 8/54 (14.8%) neonates developed sepsis. SP-D (p < 0.0001), mono- and di-unsaturated PC were significantly increased (p = 0.05), and polyunsaturated PC was significantly decreased (p < 0.01) during sepsis compared to controls. SP-D:PC ratios were significantly increased during sepsis (p < 0.001), and SP-D concentrations were directly related to gestational age in neonates with sepsis (r2  = 0.389, p < 0.01). CONCLUSION: Increased SP-D levels and changes in PC molecular species during sepsis were consistent with direct or indirect pulmonary inflammatory processes. Very preterm neonates we able to mount an acute inflammatory innate immune response to infectious challenges, despite low levels of surfactant proteins at birth.


Asunto(s)
Sepsis Neonatal/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Estudios de Casos y Controles , Femenino , Edad Gestacional , Humanos , Recién Nacido , Recien Nacido Prematuro , Masculino , Sepsis Neonatal/diagnóstico , Sepsis Neonatal/terapia , Fosfatidilcolinas/metabolismo
18.
J Lipid Res ; 59(10): 1880-1892, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30108154

RESUMEN

Secreted pulmonary surfactant phosphatidylcholine (PC) has a complex intra-alveolar metabolism that involves uptake and recycling by alveolar type II epithelial cells, catabolism by alveolar macrophages, and loss up the bronchial tree. We compared the in vivo metabolism of animal-derived poractant alfa (Curosurf) and a synthetic surfactant (CHF5633) in adult male C57BL/6 mice. The mice were dosed intranasally with either surfactant (80 mg/kg body weight) containing universally 13C-labeled dipalmitoyl PC (DPPC) as a tracer. The loss of [U13C]DPPC from bronchoalveolar lavage and lung parenchyma, together with the incorporation of 13C-hydrolysis fragments into new PC molecular species, was monitored by electrospray ionization tandem mass spectrometry. The catabolism of CHF5633 was considerably delayed compared with poractant alfa, the hydrolysis products of which were cleared more rapidly. There was no selective resynthesis of DPPC and, strikingly, acyl remodeling resulted in preferential synthesis of polyunsaturated PC species. In conclusion, both surfactants were metabolized by similar pathways, but the slower catabolism of CHF5633 resulted in longer residence time in the airways and enhanced recycling of its hydrolysis products into new PC species.


Asunto(s)
Productos Biológicos/metabolismo , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolípidos/metabolismo , Proteína B Asociada a Surfactante Pulmonar/metabolismo , Proteína C Asociada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Animales , Productos Biológicos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fragmentos de Péptidos/farmacología , Fosfatidilcolinas/biosíntesis , Fosfatidilcolinas/farmacología , Fosfolípidos/farmacología , Proteína B Asociada a Surfactante Pulmonar/farmacología , Proteína C Asociada a Surfactante Pulmonar/farmacología , Surfactantes Pulmonares/farmacología
19.
J Lipid Res ; 59(6): 1034-1045, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29716960

RESUMEN

Acute respiratory distress syndrome (ARDS) is associated with a severe pro-inflammatory response; although decreased plasma cholesterol concentration has been linked to systemic inflammation, any association of phospholipid metabolic pathways with ARDS has not been characterized. Plasma phosphatidylcholine (PC), the major phospholipid of circulating lipoproteins, is synthesized in human liver by two biologically diverse pathways: the cytidine diphosphocholine (CDP):choline and phosphatidylethanolamine N-methyltransferase (PEMT) pathways. Here, we used ESI-MS/MS both to characterize plasma PC compositions and to quantify metabolic fluxes of both pathways using stable isotopes in patients with severe ARDS and in healthy controls. Direct incorporation of methyl-D9-choline estimated CDP:choline pathway flux, while PEMT flux was determined from incorporations of one and two methyl-D3 groups derived from methyl-D9-choline. The results of MS/MS analysis showed significant alterations in plasma PC composition in patients with ARDS versus healthy controls. In particular, the increased overall methyl-D9-PC enrichment and, most importantly, the much lower methyl-D3-PC and methyl-D6-PC enrichments suggest increased flux through the CDP:choline pathway and reduced flux through the PEMT pathway in ARDS. To our knowledge, this study is the first to demonstrate significant plasma PC molecular compositional changes combined with associated alterations in the dynamics of PC synthetic pathways in patients with ARDS.


Asunto(s)
Hígado/metabolismo , Fosfatidilcolinas/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Metilación , Persona de Mediana Edad
20.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305510

RESUMEN

Phytoplankton replace phosphorus-containing lipids (P-lipids) with non-P analogues, boosting growth in P-limited oceans. In the model diatom Thalassiosira pseudonana, the substitution dynamics of lipid headgroups are well described, but those of the individual lipids, differing in fatty acid composition, are unknown. Moreover, the behavior of lipids outside the common headgroup classes and the relationship between lipid substitution and cellular particulate organic P (POP) have yet to be reported. We investigated these through the mass spectrometric lipidomics of P-replete (P+) and P-depleted (P-) T. pseudonana cultures. Nonlipidic POP was depleted rapidly by the initiation of P stress, followed by the cessation of P-lipid biosynthesis and per-cell reductions in the P-lipid levels of successive generations. Minor P-lipid degradative breakdown was observed, releasing P for other processes, but most P-lipids remained intact. This may confer an advantage on efficient heterotrophic lipid consumers in P-limited oceans. Glycerophosphatidylcholine (PC), the predominant P-lipid, was similar in composition to its betaine substitute lipid. During substitution, PC was less abundant per cell and was more highly unsaturated in composition. This may reflect underlying biosynthetic processes or the regulation of membrane biophysical properties subject to lipid substitution. Finally, levels of several diglycosylceramide lipids increased as much as 10-fold under P stress. These represent novel substitute lipids and potential biomarkers for the study of P limitation in situ, contributing to growing evidence highlighting the importance of sphingolipids in phycology. These findings contribute much to our understanding of P-lipid substitution, a powerful and widespread adaptation to P limitation in the oligotrophic ocean.IMPORTANCE Unicellular organisms replace phosphorus (P)-containing membrane lipids with non-P substitutes when P is scarce, allowing greater growth of populations. Previous research with the model diatom species Thalassiosira pseudonana grouped lipids by polar headgroups in their chemical structures. The significance of the research reported here is threefold. (i) We described the individual lipids within the headgroups during P-lipid substitution, revealing the relationships between lipid headgroups and hinting at the underlying biochemical processes. (ii) We measured total cellular P, placing P-lipid substitution in the context of the broader response to P stress and yielding insight into the implications of substitution in the marine environment. (iii) We identified lipids previously unknown in this system, revealing a new type of non-P substitute lipid, which is potentially useful as a biomarker for the investigation of P limitation in the ocean.


Asunto(s)
Diatomeas/metabolismo , Fósforo/metabolismo , Estrés Fisiológico , Adaptación Fisiológica , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Lípidos de la Membrana/metabolismo , Océano Pacífico , Fosfolípidos/metabolismo , Fósforo/deficiencia , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...