Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 12: 712652, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539436

RESUMEN

Although the role of underwater phases is well-known, no study has taken an interest in describing and quantifying the distance and time spent in apnea as a condition for optimal performance. This study aimed to investigate the impact of time and distance spent underwater and surface parameters on the swimming performance of elite swimmers. The performances of 79 swimmers in 100-m freestyle were analyzed (short-course). The underwater and spatiotemporal parameters of three groups have been recorded: finalists of the 2018 World Swimming Championships (WORLD), French swimmers who reached a 100 m performance time under 50 s at the 2018 French National Championships (UND50), and those who reached a 100 m performance time above 50 s (UP50). The WORLD group spent more distance underwater (37.50 ± 4.92 m) in comparison with UND50 (31.90 ± 4.88 m, p < 0.05) and UP50 (31.94 ± 4.93 m, p < 0.01) groups. The total percentage of non-swimming time was higher for WORLD (39.11 ± 4.73%) vs. UND50 (34.21 ± 4.55%, p < 0.05) and UP50 (33.94 ± 5.00%, p < 0.01). In addition, underwater speed was higher for WORLD (2.54 ± 0.05 m/s) compared with UND50 (2.46 ± 0.09 m/s, p < 0.05) and UP50 (2.38 ± 0.11 m/s, p < 0.01). Three parameters among the underwater phases (i.e. distance underwater, speed underwater, and total percentage of non-swimming time) determine the 100-m freestyle short course performance. These data suggest an appropriate focus on specific apnea training to improve underwater skills during short-course swimming performances.

2.
Front Physiol ; 12: 815824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145428

RESUMEN

It is well known that the duration of apnea is longer in static than in dynamic conditions, but the impact of exercise intensity on the apnea duration needs to be investigated. The aim of this study was to determine the relationship between apnea duration and exercise intensity, and the associated metabolic parameters. Ten healthy active young non-apnea trained (NAT) men participated in this study. During the first visit, they carried out a maximum static apnea (SA) and a maximal progressive cycle exercise to evaluate the power output achieved at peak oxygen uptake (PVO2peak). During the second visit, they performed four randomized dynamic apneas (DAs) at 20, 30, 40, and 50% of PVO2peak (P20, P30, P40, and P50) preceded by 4 min of exercise without apnea. Duration of apnea, heart rate (HR), arterial oxygen saturation (SpO2), blood lactate concentration [La], rating of perceived exertion (RPE), and subjective feeling were recorded. Apnea duration was significantly higher during SA (68.1 ± 23.6 s) compared with DA. Apnea duration at P20 (35.6 ± 11.7 s) was higher compared with P30 (25.6 ± 6.3 s), P40 (19.2 ± 6.7 s), and P50 (16.9 ± 2.5 s). The relationship between apnea duration and exercise intensity followed an exponential function (y = 56.388e-0.025 x ). SA as DA performed at P20 and P30 induces a bradycardia. Apnea induces an SpO2 decrease which is higher during DA (-10%) compared with SA (-4.4%). The decreases of SPO2 recorded during DA do not differ despite the increase in exercise intensity. An increase of [La] was observed in P30 and P40 conditions. RPE and subjective feeling remained unchanged whatever the apnea conditions might be. These results suggest that the DA performed at 30% of VO2peak could be the best compromise between apnea duration and exercise intensity. Then, DA training at low intensity could be added to aerobic training since, despite the moderate hypoxia, it is sufficient to induce and increase [La] generally observed during high-intensity training.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA