Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(26): eado0073, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924399

RESUMEN

We report on the energy dependence of the photoemission time delay from the single-element layered dielectric HOPG (highly oriented pyrolytic graphite). This system offers the unique opportunity to directly observe the Eisenbud-Wigner-Smith (EWS) time delays related to the bulk electronic band structure without being strongly perturbed by ubiquitous effects of transport, screening, and multiple scattering. We find the experimental streaking time shifts to be sensitive to the modulation of the density of states in the high-energy region (E ≈ 100 eV) of the band structure. The present attosecond chronoscopy experiments reveal an energy-dependent increase of the photoemission time delay when the final state energy of the excited electrons lies in the vicinity of the bandgap providing information difficult to access by conventional spectroscopy. Accompanying simulations further corroborate our interpretation.

2.
Dalton Trans ; 52(27): 9423-9432, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37358422

RESUMEN

The third-order nonlinear optical (NLO) properties of a series of platinum diimine-dithiolate complexes [Pt(N^N)(S^S)] were investigated by means of Z-scan measurements, revealing second hyperpolarizability values up to 10-29 esu, saturable absorption properties, and nonlinear refractive behaviour, which were rationalized also by means of DFT calculations.

3.
Nanoscale Adv ; 4(18): 3845-3854, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36133344

RESUMEN

Surface-supported molecular overlayers have demonstrated versatility as platforms for fundamental research and a broad range of applications, from atomic-scale quantum phenomena to potential for electronic, optoelectronic and catalytic technologies. Here, we report a structural and electronic characterisation of self-assembled magnesium phthalocyanine (MgPc) mono and bilayers on the Ag(100) surface, via low-temperature scanning tunneling microscopy and spectroscopy, angle-resolved photoelectron spectroscopy (ARPES), density functional theory (DFT) and tight-binding (TB) modeling. These crystalline close-packed molecular overlayers consist of a square lattice with a basis composed of a single, flat-adsorbed MgPc molecule. Remarkably, ARPES measurements at room temperature on the monolayer reveal a momentum-resolved, two-dimensional (2D) electronic energy band, 1.27 eV below the Fermi level, with a width of ∼20 meV. This 2D band results from in-plane hybridization of highest occupied molecular orbitals of adjacent, weakly interacting MgPc's, consistent with our TB model and with DFT-derived nearest-neighbor hopping energies. This work opens the door to quantitative characterisation - as well as control and harnessing - of subtle electronic interactions between molecules in functional organic nanofilms.

4.
Phys Rev Lett ; 123(17): 176801, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702261

RESUMEN

We report measurements of the temporal dynamics of the valence band photoemission from the magnesium (0001) surface across the resonance of the Γ[over ¯] surface state at 134 eV and link them to observations of high-resolution synchrotron photoemission and numerical calculations of the time-dependent Schrödinger equation using an effective single-electron model potential. We observe a decrease in the time delay between photoemission from delocalized valence states and the localized core orbitals on resonance. Our approach to rigorously link excitation energy-resolved conventional steady-state photoemission with attosecond streaking spectroscopy reveals the connection between energy-space properties of bound electronic states and the temporal dynamics of the fundamental electronic excitations underlying the photoelectric effect.

5.
Opt Express ; 26(2): 1108-1124, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401989

RESUMEN

We present an optical parametric chirped pulse amplifier (OPCPA) delivering CEP-stable ultrashort pulses with 7 fs, high energies of more than 1.8 mJ and high average output power exceeding 10 W at a repetition rate of 6 kHz. The system is pumped by a picosecond regenerative thin-disk amplifier and exhibits an excellent long-term stability. In a proof-of-principle experiment, high harmonic generation is demonstrated in neon up to the 61st order.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...