Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 54: 110316, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38550239

RESUMEN

The national-level land cover database is essential to sustainable landscape management, environmental protection, and food security. In Afghanistan, the existing national-level land cover data from 1972, 1993, and 2010 relied on satellite data from diverse sensors adopted three different land cover classification systems. This inconsistent land cover map across the various years leads to the challenge of assessing landscape changes that are crucial for management efforts. To address this challenge, a 19-year national-level land cover dataset from 2000 to 2018 was developed for the first time to aid policy development, settlement planning, and the monitoring of forests and agriculture across time. In the development of the 19 year span of land cover data products, a state-of-the-art remote sensing approach, employing a harmonized classification scheme was implemented through the utilization of Google Earth Engine (GEE). Publicly accessible Landsat imagery and additional geospatial covariates were integrated to produce an annual land cover database for Afghanistan. The generated dataset bridges historical data gaps and facilitates robust land cover change information. The annual land cover database is now accessible through https://rds.icimod.org/. This repository ensures that the annual land cover data is readily available to all users interested in comprehending the dynamic land cover changes happening in Afghanistan.

3.
Nat Food ; 3(1): 19-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-37118483

RESUMEN

Spatiotemporally consistent data on global cropland extent is essential for tracking progress towards sustainable food production. In the present study, we present an analysis of global cropland area change for the first two decades of the twenty-first century derived from satellite data time-series. We estimate that, in 2019, the cropland area was 1,244 Mha with a corresponding total annual net primary production (NPP) of 5.5 Pg C year-1. From 2003 to 2019, cropland area increased by 9% and cropland NPP by 25%, primarily due to agricultural expansion in Africa and South America. Global cropland expansion accelerated over the past two decades, with a near doubling of the annual expansion rate, most notably in Africa. Half of the new cropland area (49%) replaced natural vegetation and tree cover, indicating a conflict with the sustainability goal of protecting terrestrial ecosystems. From 2003 to 2019, global per-capita cropland area decreased by 10% due to population growth. However, the per-capita annual cropland NPP increased by 3.5% as a result of intensified agricultural land use. The presented global, high-resolution, cropland map time-series supports monitoring of natural land appropriation at the local, national and international levels.

4.
Nat Sustain ; 20212021.
Artículo en Inglés | MEDLINE | ID: mdl-34377840

RESUMEN

A prominent goal of policies mitigating climate change and biodiversity loss is to achieve zero-deforestation in the global supply chain of key commodities, such as palm oil and soybean. However, the extent and dynamics of deforestation driven by commodity expansion are largely unknown. Here we mapped annual soybean expansion in South America between 2000 and 2019 by combining satellite observations and sample field data. From 2000-2019, the area cultivated with soybean more than doubled from 26.4 Mha to 55.1 Mha. Most soybean expansion occurred on pastures originally converted from natural vegetation for cattle production. The most rapid expansion occurred in the Brazilian Amazon, where soybean area increased more than 10-fold, from 0.4 Mha to 4.6 Mha. Across the continent, 9% of forest loss was converted to soybean by 2016. Soy-driven deforestation was concentrated at the active frontiers, nearly half located in the Brazilian Cerrado. Efforts to limit future deforestation must consider how soybean expansion may drive deforestation indirectly by displacing pasture or other land uses. Holistic approaches that track land use across all commodities coupled with vegetation monitoring are required to maintain critical ecosystem services.

6.
Sci Adv ; 7(14)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33811082

RESUMEN

Across South America, the expansion of commodity land uses has underpinned substantial economic development at the expense of natural land cover and associated ecosystem services. Here, we show that such human impact on the continent's land surface, specifically land use conversion and natural land cover modification, expanded by 268 million hectares (Mha), or 60%, from 1985 to 2018. By 2018, 713 Mha, or 40%, of the South American landmass was impacted by human activity. Since 1985, the area of natural tree cover decreased by 16%, and pasture, cropland, and plantation land uses increased by 23, 160, and 288%, respectively. A substantial area of disturbed natural land cover, totaling 55 Mha, had no discernable land use, representing land that is degraded in terms of ecosystem function but not economically productive. These results illustrate the extent of ongoing human appropriation of natural ecosystems in South America, which intensifies threats to ecosystem-scale functions.

7.
Sci Adv ; 6(11): eaax8574, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195340

RESUMEN

Tropical forest fragmentation results in habitat and biodiversity loss and increased carbon emissions. Here, we link an increased likelihood of tropical forest loss to decreasing fragment size, particularly in primary forests. The relationship holds for protected areas, albeit with half the rate of loss compared with all fragments. The fact that disturbance increases as primary forest fragment size decreases reflects higher land use pressures and improved access for resource extraction and/or conversion in smaller fragments. Large remaining forest fragments are found in the Amazon and Congo Basins and Insular Southeast Asia, with the majority of large extent/low loss fragments located in the Amazon. Tropical areas without large fragments, including Central America, West Africa, and mainland Southeast Asia, have higher loss within and outside of protected areas. Results illustrate the need for rigorous land use planning, management, and enforcement in maintaining large tropical forest fragments and restoring regions of advanced fragmentation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
8.
Sci Adv ; 5(10): eaax2546, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31692892

RESUMEN

Intact tropical forests, free from substantial anthropogenic influence, store and sequester large amounts of atmospheric carbon but are currently neglected in international climate policy. We show that between 2000 and 2013, direct clearance of intact tropical forest areas accounted for 3.2% of gross carbon emissions from all deforestation across the pantropics. However, full carbon accounting requires the consideration of forgone carbon sequestration, selective logging, edge effects, and defaunation. When these factors were considered, the net carbon impact resulting from intact tropical forest loss between 2000 and 2013 increased by a factor of 6 (626%), from 0.34 (0.37 to 0.21) to 2.12 (2.85 to 1.00) petagrams of carbon (equivalent to approximately 2 years of global land use change emissions). The climate mitigation value of conserving the 549 million ha of tropical forest that remains intact is therefore significant but will soon dwindle if their rate of loss continues to accelerate.


Asunto(s)
Carbono/metabolismo , Conservación de los Recursos Naturales , Bosques , Geografía , Clima Tropical
9.
Sci Total Environ ; 665: 1053-1063, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30893737

RESUMEN

The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for in assessments of infrastructure development, agricultural management, conservation prioritization, and sustainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment. Some challenges are technical, related to data awareness, processing, and access. These challenges require systematic investment in model platforms and data management. Other challenges are more conceptual but still systemic; they are byproducts of the structure of existing ecosystem service models and addressing them requires scientific investment in solutions and tools applicable to a wide range of models and approaches. We also highlight new ways in which EO can be leveraged for ecosystem service assessments, identifying promising new areas of research. More widespread use of EO for ecosystem service assessment will only be achieved if all of these types of challenges are addressed. This will require non-traditional funding and partnering opportunities from private and public agencies to promote data exploration, sharing, and archiving. Investing in this integration will be reflected in better and more accurate ecosystem service assessments worldwide.

10.
Science ; 363(6423)2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30630898

RESUMEN

Baccini et al (Reports, 13 October 2017, p. 230) report MODIS-derived pantropical forest carbon change, with spatial patterns of carbon loss that do not correspond to higher-resolution Landsat-derived tree cover loss. The assumption that map results are unbiased and free of commission and omission errors is not supported. The application of passive moderate-resolution optical data to monitor forest carbon change overstates our current capabilities.


Asunto(s)
Carbono , Bosques , Árboles
11.
Proc Natl Acad Sci U S A ; 116(2): 428-435, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30559198

RESUMEN

Brazil has become a global leader in the production of commodity row crops such as soybean, sugarcane, cotton, and corn. Here, we report an increase in Brazilian cropland extent from 26.0 Mha in 2000 to 46.1 Mha in 2014. The states of Maranhão, Tocantins, Piauí, Bahia (collectively MATOPIBA), Mato Grosso, Mato Grosso do Sul, and Pará all more than doubled in cropland extent. The states of Goiás, Minas Gerais, and São Paulo each experienced >50% increases. The vast majority of expansion, 79%, occurred on repurposed pasture lands, and 20% was from the conversion of natural vegetation. Area of converted Cerrado savannas was nearly 2.5 times that of Amazon forests, and accounted for more than half of new cropland in MATOPIBA. Spatiotemporal dynamics of cropland expansion reflect market conditions, land use policies, and other factors. Continued extensification of cropland across Brazil is possible and may be likely under current conditions, with attendant benefits for and challenges to development.


Asunto(s)
Conservación de los Recursos Naturales , Producción de Cultivos , Bosque Lluvioso , Brasil , Humanos
12.
Sci Adv ; 4(11): eaat2993, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30417092

RESUMEN

A regional assessment of forest disturbance dynamics from 2000 to 2014 was performed for the Congo Basin countries using time-series satellite data. Area of forest loss was estimated and disaggregated by predisturbance forest type and direct disturbance driver. An estimated 84% of forest disturbance area in the region is due to small-scale, nonmechanized forest clearing for agriculture. Annual rates of small-scale clearing for agriculture in primary forests and woodlands doubled between 2000 and 2014, mirroring increasing population growth. Smallholder clearing in the Democratic Republic of the Congo alone accounted for nearly two-thirds of total forest loss in the basin. Selective logging is the second most significant disturbance driver, contributing roughly 10% of regional gross forest disturbance area and more than 60% of disturbance area in Gabon. Forest loss due to agro-industrial clearing along the Gulf of Guinea coast more than doubled in the last half of the study period. Maintaining natural forest cover in the Congo Basin into the future will be challenged by an expected fivefold population growth by 2100 and allocation of industrial timber harvesting and large-scale agricultural development inside remaining old-growth forests.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Árboles/fisiología , Agricultura , Congo , Industrias
13.
Nature ; 563(7732): E26, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275480

RESUMEN

In this Letter, errors in Supplementary Table 1 have been corrected.

14.
Nature ; 560(7720): 639-643, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089903

RESUMEN

Land change is a cause and consequence of global environmental change1,2. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services1-4. However, quantification of global land change is lacking. Here we analyse 35 years' worth of satellite data and provide a comprehensive record of global land-change dynamics during the period 1982-2016. We show that-contrary to the prevailing view that forest area has declined globally5-tree cover has increased by 2.24 million km2 (+7.1% relative to the 1982 level). This overall net gain is the result of a net loss in the tropics being outweighed by a net gain in the extratropics. Global bare ground cover has decreased by 1.16 million km2 (-3.1%), most notably in agricultural regions in Asia. Of all land changes, 60% are associated with direct human activities and 40% with indirect drivers such as climate change. Land-use change exhibits regional dominance, including tropical deforestation and agricultural expansion, temperate reforestation or afforestation, cropland intensification and urbanization. Consistently across all climate domains, montane systems have gained tree cover and many arid and semi-arid ecosystems have lost vegetation cover. The mapped land changes and the driver attributions reflect a human-dominated Earth system. The dataset we developed may be used to improve the modelling of land-use changes, biogeochemical cycles and vegetation-climate interactions to advance our understanding of global environmental change1-4,6.


Asunto(s)
Planeta Tierra , Ecosistema , Monitoreo del Ambiente , Actividades Humanas/estadística & datos numéricos , Agricultura/estadística & datos numéricos , Agricultura/tendencias , Cambio Climático/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Actividades Humanas/tendencias , Imágenes Satelitales , Árboles/crecimiento & desarrollo
15.
Ecol Appl ; 28(8): 1982-1997, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29791763

RESUMEN

Forest fragmentation can lead to habitat reduction, edge increase, and exposure to disturbances. A key emerging policy to protect forests is payments for ecosystem services (PES), which offers compensation to landowners for environmental stewardship. Mexico was one of the first countries to implement a broad-scale PES program, enrolling over 2.3 Mha by 2010. However, Mexico's PES did not completely eliminate deforestation in enrolled parcels and could have increased incentives to hide deforestation in ways that increased fragmentation. We studied whether Mexican forests enrolled in the PES program had less forest fragmentation than those not enrolled, and whether the PES effects varied among forest types, among socioeconomic zones, or compared to the protected areas system. We analyzed forest cover maps from 2000 to 2012 to calculate forest fragmentation. We summarized fragmentation for different forest types and in four socioeconomic zones. We then used matching analysis to investigate the possible causal impacts of the PES on forests across Mexico and compared the effects of the PES program with that of protected areas. We found that the area covered by forest in Mexico decreased by 3.4% from 2000 to 2012, but there was 9.3% less forest core area. Change in forest cover was highest in the southern part of Mexico, and high-stature evergreen tropical forest lost the most core areas (-17%), while oak forest lost the least (-2%). Our matching analysis found that the PES program reduced both forest cover loss and forest fragmentation. Low-PES areas increased twice as much of the number of forest patches, forest edge, forest islets, and largest area of forest lost compared to high-PES areas. Compared to the protected areas system in Mexico, high-PES areas performed similarly in preventing fragmentation, but not as well as biosphere reserve core zones. We conclude that the PES was successful in slowing forest fragmentation at the regional and country level. However, the program could be improved by targeting areas where forest changes are more frequent, especially in southern Mexico. Fragmentation analyses should be implemented in other areas to monitor the outcomes of protection programs such as REDD+ and PES.


Asunto(s)
Conservación de los Recursos Naturales/economía , Agricultura Forestal/economía , Bosques , Biodiversidad , Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , México
16.
Nat Ecol Evol ; 2(4): 599-610, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483681

RESUMEN

As the terrestrial human footprint continues to expand, the amount of native forest that is free from significant damaging human activities is in precipitous decline. There is emerging evidence that the remaining intact forest supports an exceptional confluence of globally significant environmental values relative to degraded forests, including imperilled biodiversity, carbon sequestration and storage, water provision, indigenous culture and the maintenance of human health. Here we argue that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals. Retaining the integrity of intact forest ecosystems should be a central component of proactive global and national environmental strategies, alongside current efforts aimed at halting deforestation and promoting reforestation.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Cambio Climático , Conservación de los Recursos Naturales , Agricultura Forestal , Bosques
17.
Proc Natl Acad Sci U S A ; 114(44): 11645-11650, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078344

RESUMEN

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

18.
PLoS One ; 12(8): e0181911, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817618

RESUMEN

The lack of sufficient ground truth data has always constrained supervised learning, thereby hindering the generation of up-to-date satellite-derived thematic maps. This is all the more true for those applications requiring frequent updates over large areas such as cropland mapping. Therefore, we present a method enabling the automated production of spatially consistent cropland maps at the national scale, based on spectral-temporal features and outdated land cover information. Following an unsupervised approach, this method extracts reliable calibration pixels based on their labels in the outdated map and their spectral signatures. To ensure spatial consistency and coherence in the map, we first propose to generate seamless input images by normalizing the time series and deriving spectral-temporal features that target salient cropland characteristics. Second, we reduce the spatial variability of the class signatures by stratifying the country and by classifying each stratum independently. Finally, we remove speckle with a weighted majority filter accounting for per-pixel classification confidence. Capitalizing on a wall-to-wall validation data set, the method was tested in South Africa using a 16-year old land cover map and multi-sensor Landsat time series. The overall accuracy of the resulting cropland map reached 92%. A spatially explicit validation revealed large variations across the country and suggests that intensive grain-growing areas were better characterized than smallholder farming systems. Informative features in the classification process vary from one stratum to another but features targeting the minimum of vegetation as well as short-wave infrared features were consistently important throughout the country. Overall, the approach showed potential for routinely delivering consistent cropland maps over large areas as required for operational crop monitoring.


Asunto(s)
Productos Agrícolas , Mapeo Geográfico , Sistemas de Información Geográfica , Geografía , Modelos Teóricos , Reproducibilidad de los Resultados , Sudáfrica
19.
Bioscience ; 67(6): 534-545, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28608869

RESUMEN

We assess progress toward the protection of 50% of the terrestrial biosphere to address the species-extinction crisis and conserve a global ecological heritage for future generations. Using a map of Earth's 846 terrestrial ecoregions, we show that 98 ecoregions (12%) exceed Half Protected; 313 ecoregions (37%) fall short of Half Protected but have sufficient unaltered habitat remaining to reach the target; and 207 ecoregions (24%) are in peril, where an average of only 4% of natural habitat remains. We propose a Global Deal for Nature-a companion to the Paris Climate Deal-to promote increased habitat protection and restoration, national- and ecoregion-scale conservation strategies, and the empowerment of indigenous peoples to protect their sovereign lands. The goal of such an accord would be to protect half the terrestrial realm by 2050 to halt the extinction crisis while sustaining human livelihoods.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Clima , Ecología , Ecosistema , Humanos
20.
Sci Adv ; 3(4): e1601047, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28439536

RESUMEN

Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil's national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000-2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000-2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Brasil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...