Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 7(14)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33811082

RESUMEN

Across South America, the expansion of commodity land uses has underpinned substantial economic development at the expense of natural land cover and associated ecosystem services. Here, we show that such human impact on the continent's land surface, specifically land use conversion and natural land cover modification, expanded by 268 million hectares (Mha), or 60%, from 1985 to 2018. By 2018, 713 Mha, or 40%, of the South American landmass was impacted by human activity. Since 1985, the area of natural tree cover decreased by 16%, and pasture, cropland, and plantation land uses increased by 23, 160, and 288%, respectively. A substantial area of disturbed natural land cover, totaling 55 Mha, had no discernable land use, representing land that is degraded in terms of ecosystem function but not economically productive. These results illustrate the extent of ongoing human appropriation of natural ecosystems in South America, which intensifies threats to ecosystem-scale functions.

2.
Sci Adv ; 6(11): eaax8574, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195340

RESUMEN

Tropical forest fragmentation results in habitat and biodiversity loss and increased carbon emissions. Here, we link an increased likelihood of tropical forest loss to decreasing fragment size, particularly in primary forests. The relationship holds for protected areas, albeit with half the rate of loss compared with all fragments. The fact that disturbance increases as primary forest fragment size decreases reflects higher land use pressures and improved access for resource extraction and/or conversion in smaller fragments. Large remaining forest fragments are found in the Amazon and Congo Basins and Insular Southeast Asia, with the majority of large extent/low loss fragments located in the Amazon. Tropical areas without large fragments, including Central America, West Africa, and mainland Southeast Asia, have higher loss within and outside of protected areas. Results illustrate the need for rigorous land use planning, management, and enforcement in maintaining large tropical forest fragments and restoring regions of advanced fragmentation.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
3.
Proc Natl Acad Sci U S A ; 116(2): 428-435, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30559198

RESUMEN

Brazil has become a global leader in the production of commodity row crops such as soybean, sugarcane, cotton, and corn. Here, we report an increase in Brazilian cropland extent from 26.0 Mha in 2000 to 46.1 Mha in 2014. The states of Maranhão, Tocantins, Piauí, Bahia (collectively MATOPIBA), Mato Grosso, Mato Grosso do Sul, and Pará all more than doubled in cropland extent. The states of Goiás, Minas Gerais, and São Paulo each experienced >50% increases. The vast majority of expansion, 79%, occurred on repurposed pasture lands, and 20% was from the conversion of natural vegetation. Area of converted Cerrado savannas was nearly 2.5 times that of Amazon forests, and accounted for more than half of new cropland in MATOPIBA. Spatiotemporal dynamics of cropland expansion reflect market conditions, land use policies, and other factors. Continued extensification of cropland across Brazil is possible and may be likely under current conditions, with attendant benefits for and challenges to development.


Asunto(s)
Conservación de los Recursos Naturales , Producción de Cultivos , Bosque Lluvioso , Brasil , Humanos
4.
Nature ; 563(7732): E26, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30275480

RESUMEN

In this Letter, errors in Supplementary Table 1 have been corrected.

5.
Nature ; 560(7720): 639-643, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089903

RESUMEN

Land change is a cause and consequence of global environmental change1,2. Changes in land use and land cover considerably alter the Earth's energy balance and biogeochemical cycles, which contributes to climate change and-in turn-affects land surface properties and the provision of ecosystem services1-4. However, quantification of global land change is lacking. Here we analyse 35 years' worth of satellite data and provide a comprehensive record of global land-change dynamics during the period 1982-2016. We show that-contrary to the prevailing view that forest area has declined globally5-tree cover has increased by 2.24 million km2 (+7.1% relative to the 1982 level). This overall net gain is the result of a net loss in the tropics being outweighed by a net gain in the extratropics. Global bare ground cover has decreased by 1.16 million km2 (-3.1%), most notably in agricultural regions in Asia. Of all land changes, 60% are associated with direct human activities and 40% with indirect drivers such as climate change. Land-use change exhibits regional dominance, including tropical deforestation and agricultural expansion, temperate reforestation or afforestation, cropland intensification and urbanization. Consistently across all climate domains, montane systems have gained tree cover and many arid and semi-arid ecosystems have lost vegetation cover. The mapped land changes and the driver attributions reflect a human-dominated Earth system. The dataset we developed may be used to improve the modelling of land-use changes, biogeochemical cycles and vegetation-climate interactions to advance our understanding of global environmental change1-4,6.


Asunto(s)
Planeta Tierra , Ecosistema , Monitoreo del Ambiente , Actividades Humanas/estadística & datos numéricos , Agricultura/estadística & datos numéricos , Agricultura/tendencias , Cambio Climático/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Agricultura Forestal/tendencias , Actividades Humanas/tendencias , Imágenes Satelitales , Árboles/crecimiento & desarrollo
6.
PLoS One ; 12(8): e0181911, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28817618

RESUMEN

The lack of sufficient ground truth data has always constrained supervised learning, thereby hindering the generation of up-to-date satellite-derived thematic maps. This is all the more true for those applications requiring frequent updates over large areas such as cropland mapping. Therefore, we present a method enabling the automated production of spatially consistent cropland maps at the national scale, based on spectral-temporal features and outdated land cover information. Following an unsupervised approach, this method extracts reliable calibration pixels based on their labels in the outdated map and their spectral signatures. To ensure spatial consistency and coherence in the map, we first propose to generate seamless input images by normalizing the time series and deriving spectral-temporal features that target salient cropland characteristics. Second, we reduce the spatial variability of the class signatures by stratifying the country and by classifying each stratum independently. Finally, we remove speckle with a weighted majority filter accounting for per-pixel classification confidence. Capitalizing on a wall-to-wall validation data set, the method was tested in South Africa using a 16-year old land cover map and multi-sensor Landsat time series. The overall accuracy of the resulting cropland map reached 92%. A spatially explicit validation revealed large variations across the country and suggests that intensive grain-growing areas were better characterized than smallholder farming systems. Informative features in the classification process vary from one stratum to another but features targeting the minimum of vegetation as well as short-wave infrared features were consistently important throughout the country. Overall, the approach showed potential for routinely delivering consistent cropland maps over large areas as required for operational crop monitoring.


Asunto(s)
Productos Agrícolas , Mapeo Geográfico , Sistemas de Información Geográfica , Geografía , Modelos Teóricos , Reproducibilidad de los Resultados , Sudáfrica
7.
Sci Adv ; 3(4): e1601047, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28439536

RESUMEN

Deforestation rates in primary humid tropical forests of the Brazilian Legal Amazon (BLA) have declined significantly since the early 2000s. Brazil's national forest monitoring system provides extensive information for the BLA but lacks independent validation and systematic coverage outside of primary forests. We use a sample-based approach to consistently quantify 2000-2013 tree cover loss in all forest types of the region and characterize the types of forest disturbance. Our results provide unbiased forest loss area estimates, which confirm the reduction of primary forest clearing (deforestation) documented by official maps. By the end of the study period, nonprimary forest clearing, together with primary forest degradation within the BLA, became comparable in area to deforestation, accounting for an estimated 53% of gross tree cover loss area and 26 to 35% of gross aboveground carbon loss. The main type of tree cover loss in all forest types was agroindustrial clearing for pasture (63% of total loss area), followed by small-scale forest clearing (12%) and agroindustrial clearing for cropland (9%), with natural woodlands being directly converted into croplands more often than primary forests. Fire accounted for 9% of the 2000-2013 primary forest disturbance area, with peak disturbances corresponding to droughts in 2005, 2007, and 2010. The rate of selective logging exploitation remained constant throughout the study period, contributing to forest fire vulnerability and degradation pressures. As the forest land use transition advances within the BLA, comprehensive tracking of forest transitions beyond primary forest loss is required to achieve accurate carbon accounting and other monitoring objectives.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Brasil
9.
10.
Proc Natl Acad Sci U S A ; 112(5): 1328-33, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605880

RESUMEN

To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas ("concessions") for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17-127%, 44-129%, or 3.1-11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia's moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241-615 MtCO2e (2.8-7.2%) lower without leakage, or 213-545 MtCO2e (2.5-6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30-7.50/tCO2e (mandatory) or $12.95-19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed.

11.
Science ; 336(6088): 1573-6, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22723420

RESUMEN

Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Ecosistema , Árboles , Clima Tropical , África del Sur del Sahara , Asia , Biomasa , Países en Desarrollo , América Latina , Método de Montecarlo , Tecnología de Sensores Remotos , Suelo
12.
Proc Natl Acad Sci U S A ; 107(19): 8650-5, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20421467

RESUMEN

A globally consistent methodology using satellite imagery was implemented to quantify gross forest cover loss (GFCL) from 2000 to 2005 and to compare GFCL among biomes, continents, and countries. GFCL is defined as the area of forest cover removed because of any disturbance, including both natural and human-induced causes. GFCL was estimated to be 1,011,000 km(2) from 2000 to 2005, representing 3.1% (0.6% per year) of the year 2000 estimated total forest area of 32,688,000 km(2). The boreal biome experienced the largest area of GFCL, followed by the humid tropical, dry tropical, and temperate biomes. GFCL expressed as the proportion of year 2000 forest cover was highest in the boreal biome and lowest in the humid tropics. Among continents, North America had the largest total area and largest proportion of year 2000 GFCL. At national scales, Brazil experienced the largest area of GFCL over the study period, 165,000 km(2), followed by Canada at 160,000 km(2). Of the countries with >1,000,000 km(2) of forest cover, the United States exhibited the greatest proportional GFCL and the Democratic Republic of Congo the least. Our results illustrate a pervasive global GFCL dynamic. However, GFCL represents only one component of net change, and the processes driving GFCL and rates of recovery from GFCL differ regionally. For example, the majority of estimated GFCL for the boreal biome is due to a naturally induced fire dynamic. To fully characterize global forest change dynamics, remote sensing efforts must extend beyond estimating GFCL to identify proximate causes of forest cover loss and to estimate recovery rates from GFCL.


Asunto(s)
Conservación de los Recursos Naturales , Internacionalidad , Árboles/fisiología , Ecosistema , Geografía
13.
Proc Natl Acad Sci U S A ; 105(27): 9439-44, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18591652

RESUMEN

Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.


Asunto(s)
Humedad , Comunicaciones por Satélite/instrumentación , Árboles , Clima Tropical , Geografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...