Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(7): 242, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849707

RESUMEN

Emerging from the shadow of the COVID-19 pandemic, it is time to ground ourselves and retrospectively assess the recent achievements of SEGH over the past years. This editorial serves as a comprehensive report on the progress made in comparison to the aspirations and goals set by the society's board in 2019 (Watts et al., Environ Geochem Health 42:343-347, 2019) (Fig. 1) and reflects on the state of the SEGH community as it reached its 50th anniversary at the close of 2021 (Watts et al. Environ Geochem Health 45:1165-1171, 2023). The focus lies on how the SEGH community navigated through the extraordinary challenges posed by the COVID-19 pandemic since early 2020, and to what extent the 2023 targets have been met.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Salud Ambiental , Sociedades Científicas , Estudios Retrospectivos , SARS-CoV-2
2.
Environ Geochem Health ; 45(4): 1165-1171, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35044549

RESUMEN

When the SEGH international board released a short editorial paper back in 2019, we described an aim to increase the membership offering, whilst improving the diversity of input regionally, by scientific discipline and to ensure greater and more regular contact across the regions from 2020 onwards. Wider aspirations described in 2019 (Watts et al. 2019) are discussed within this short communication at the end of 2021 to evaluate progress made. In particular, how the SEGH community adapted to the unprecedented circumstances that have challenged each and every one of us throughout the COVID-19 pandemic since early 2020 and are likely to influence our activities for the foreseeable future.


Asunto(s)
Salud Ambiental , Ciencia Ambiental , Sociedades , Humanos , COVID-19/epidemiología , Pandemias
3.
Environ Geochem Health ; 37(4): 675-87, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26173774

RESUMEN

Whilst vehicular and industrial contributions to the airborne particulate budget are well explored, the input due to building demolition is relatively unknown. Air quality is of importance to human health, and it is well known that composition of airborne particles can have a significant influence on both chronic and acute health effects. Road dust (RD) was collected before and after the demolition of a large building to elucidate changes in elemental profile. Rainfall and PM10 mass concentration data aided interpretation of the elemental data. Quantification of Al, As, Ba, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Rh, S, Si, Sn, Ti, V and Zn was carried out. It was found that only Al, K, Mg, Si and S increased in concentration across all size fractions after the building demolition. Risk assessment was then carried out on elements with applicable reference dose values to assess the potential health risks due to the demolition. Significant risk to children was observed for chromium and aluminium exposure. PM10, monitored 40 metres from the demolition site, indicated no abnormal concentrations during the demolition; however, rainfall data were shown to affect the concentration of PM10. The elemental data observed in this study could possibly indicate the role of increased sulphur concentrations (in this case as a result of the demolition) on the buffer capacity of RD, hence leaching metals into rainwater.


Asunto(s)
Materiales de Construcción/análisis , Polvo/análisis , Exposición a Riesgos Ambientales/análisis , Contaminantes Ambientales/análisis , Metales/análisis , Material Particulado/análisis , Niño , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/toxicidad , Humanos , Metales/toxicidad , Tamaño de la Partícula , Lluvia , Medición de Riesgo , Reino Unido
4.
Environ Geochem Health ; 34(6): 689-96, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23053928

RESUMEN

Continuous global urbanisation causes an ever-growing ecological footprint of pollution. Road dust (RD), one of these pollutants, poses a health concern due to carcinogenic and toxic components potentially present in the micron-sized fractions. The literature reports on the concentrations of trace, toxic metals and metalloids present in RD (Hooker and Nathanail in Chem Geol 226:340-351, 2006), but the literature on its molecular composition is limited. Recent reports on the bioaccessibility of platinum group metals are also reported (Colombo et al. in Chem Geol 226:340-351, 2008). In vitro and animal toxicological studies confirmed that the chemical composition of inhaled particles plays a major role in its toxic, genotoxic and carcinogenic mechanisms, but the component-specific toxic effects are still not understood. Particle-bound airborne transition metals can also lead to the production of reactive oxygen species in lung tissue; a special concern amongst particularly susceptible cohorts (children and elderly). The characterisation of the molecular composition of the fine fraction is evidently of importance for public health. During a pilot study, partially characterised size-fractioned RD samples (Barrett et al. in Eviron Sci Technol 44:2940-2946, 2010) were analysed for their elemental concentration using X-ray fluorescence spectrometry and inductively coupled plasma mass spectrometry. In addition, separately dispersed particles (200 particles per size fraction) were analysed individually by means of computer-controlled electron probe X-ray micro-analysis (CC-EPXMA) and their molecular structure probed by studying elemental associations. These were correlated with micro-Raman spectroscopy (MRS) results. It was found that the fine fraction (<38 µm) had the highest Pb (238 ppm) and Cr (171 ppm) concentrations. The CC-EPXMA data showed >50 % association of Cr-rich particles with Pb, and the MRS data showed that the Cr was mostly present as lead chromate and therefore in the Cr(VI) oxidation state. Concentrations of both Pb and Cr decreased substantially (279 (<38 µm)-13 ppm (<1 mm); 171 (<38 µm)-91 ppm (< 1 mm), respectively) in the larger fractions. Apart from rather alarmingly high concentrations of oxidative stressors (Cu, Fe, Mn), the carcinogenic and toxic potential of the inhalable fraction is evident. Preliminary bioaccessibility data indicated that both Cr and Pb are readily mobilised in artificial lysosomal liquid and up to 19 % of Cr and 47 % of Pb were released.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Cromo/toxicidad , Polvo/análisis , Plomo/toxicidad , Material Particulado/toxicidad , Contaminantes Atmosféricos/análisis , Cromo/análisis , Ciudades , Microanálisis por Sonda Electrónica , Inglaterra , Monitoreo del Ambiente , Humanos , Plomo/análisis , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Tamaño de la Partícula , Material Particulado/análisis , Medición de Riesgo , Espectrometría por Rayos X , Espectrofotometría Atómica , Espectrometría Raman
5.
Sci Total Environ ; 407(3): 1182-92, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19012947

RESUMEN

This comprehensive study, a first in Flanders, Belgium, aimed at characterizing the residential indoor air quality of subgroups that took part in the European Community Respiratory Health Survey (ECRHS I-1991 and ECHRS II-1996) questionnaire-based asthma and related illnesses studies. This pilot study aimed at the evaluation of particulate matter and various inorganic gaseous compounds in residences in Antwerp. In addition personal exposure to the gaseous compounds of one individual per residence was assessed. The main objective was to obtain some base-line pollutant levels and compare these with studies performed in other cities, to estimate the indoor air quality in residences in Antwerp. Correlations between the various pollutant levels, indoor:outdoor ratios and the micro-environments of each residence were investigated. This paper presents results on indoor and ambient PM(1), PM(2.5) and PM(10) mass concentrations, its elemental composition in terms of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, Al, Si, S and Cl and the water-soluble ionic concentrations in terms of SO(4)(2-), NO(3)(2-), Cl(-), NH(4)(+) K(+), Ca(2+). In addition, indoor, ambient and personal exposure levels of the gases NO2, SO2, and O3 were determined. Elevated indoor:outdoor ratios were found for NO2 in residences containing gas stoves. In smoker's houses increased PM concentrations of 58 and 43% were found for the fine and coarse fractions respectively. Contrary to the fact that all I/O ratios of the registered elements in each individual house were significantly correlated to each other, no correlation could be established between the I/O ratios of the different houses, thus indicating a unique micro-environment for each residence. Linear relationships between the particulate matter elemental composition, SO2 and O3 levels indoors and outdoors could be established. No linear relationships between indoor and outdoor NO2 and particulate mass concentrations were found.


Asunto(s)
Contaminación del Aire Interior/análisis , Dióxido de Azufre/análisis , Asma/epidemiología , Bélgica/epidemiología , Gases/análisis , Artículos Domésticos/estadística & datos numéricos , Humanos , Estilo de Vida , Prevalencia , Población Suburbana , Encuestas y Cuestionarios , Población Urbana/estadística & datos numéricos
6.
Indoor Air ; 18(6): 454-63, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18823343

RESUMEN

UNLABELLED: The indoor air quality of 27 primary schools located in the city centre and suburbs of Antwerp, Belgium, was assessed. The primary aim was to obtain correlations between the various pollutant levels. Indoor:outdoor ratios and the building and classroom characteristics of each school were investigated. This paper presents results on indoor and local outdoor PM2.5 mass concentrations, its elemental composition in terms of K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, Al, Si, S, and Cl, and its black smoke content. In addition, indoor and local outdoor levels of the gases NO2, SO2, O3, and BTEX (benzene, toluene, ethyl benzene, and xylene isomers) were determined. Black smoke, NO2, SO2 and O3, occurred at indoor:outdoor ratios below unity, indicating their significant outdoor sources. No linear correlation was established between indoor and outdoor levels for PM2.5 mass concentrations and BTEX; their indoor:outdoor ratios exceeded unity except for benzene. Classroom PM2.5 occurred with a different elemental composition than local outdoor PM2.5. The re-suspension of dust because of room occupation is probably the main contributor for the I/O ratios higher than 1 reported for elements typically constituting dust particles. Finally, increased benzene concentrations were reported for classrooms located at the lower levels. PRACTICAL IMPLICATIONS: The elevated indoor PM2.5, and BTEX concentrations in primary school classrooms, exceeding the ambient concentrations, raise concerns about possible adverse health effects on susceptible children. This is aggravated by the presence of carpets and in the case of classrooms at lower levels. Analysis of PM2.5's elemental composition indicated a considerable contribution of soil dust to indoor PM2.5 mass. In order to set adequate threshold values and guidelines, detailed information on the health impact of specific PM2.5 composites is needed. The results suggest that local outdoor air concentrations measurements do not provide an accurate estimation of children's personal exposures to the identified air pollutants inside classrooms.


Asunto(s)
Contaminación del Aire Interior/análisis , Instituciones Académicas/normas , Adolescente , Contaminantes Atmosféricos/análisis , Bélgica , Niño , Monitoreo del Ambiente/métodos , Humanos
7.
Environ Int ; 33(6): 789-97, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17399789

RESUMEN

This comprehensive study, a first in Belgium, aimed at characterizing the residential and school indoor air quality of subgroups that took part in the European Community Respiratory Health Survey and the International Study of Asthma and Allergy in Childhood [Masoli M, Fabian D, Holt S, Beasley R. Global Burden of Asthma, Medical Research Institute of New Zealand, University of Southampton; 2004.] questionnaire-based asthma and related illnesses studies. The principal aim was to perform a base-line study to assess the indoor air quality in Antwerp in terms of various gaseous and particulate pollutants. Secondly, it aimed to establish correlations between these pollutants investigated, the pollutant levels in the indoor and outdoor micro-environments, findings of the previous questionnaire-based studies and an epidemiological study which ran in conjunction with this study. Lastly, these results were compared and evaluated with current indoor and ambient guidelines in various countries This paper presents selected results on PM1, PM2.5 and PM10 mass concentrations and elemental C estimates as black smoke, as well as gaseous NO(2), SO(2), O(3) and BTEX concentrations of 18 residences and 27 schools. These are related to current guidelines of Flanders, Germany, Norway, China and Canada and evaluated with reference to selected similar studies. It was found that indoor sources such as tobacco smoking and carpets, the latter causing re-suspension of dust, are responsible for elevated indoor respirable particulate matter and place school children and residents at risk. Both PM2.5 and PM10 equalled or exceeded the current guidelines adopted by Flanders, noting that 12-h and 24-h PM2.5 were compared with an annual limit value. Indoor and ambient NO(2) concentrations in the school campaign were higher than the annual EU ambient norm. The other studied pollutant levels were below the current guidelines.


Asunto(s)
Contaminación del Aire Interior , Material Particulado , Bélgica , Vivienda , Instituciones Académicas
8.
Appl Spectrosc ; 60(1): 39-47, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16454909

RESUMEN

Raman spectrometry has been used to determine the graphitic C content and to estimate particle size and disordered character of the C in aerosol particulate matter collected on filters, with sample spot sizes on the order of 100 microm being analyzed. Individual analysis of particulate matter with aerodynamic diameters less than 10 microm has therefore not been considered. In this investigation, various size fractions of aerosol particulate matter originating from both indoor and outdoor sources were collected by means of impactors or passive dry deposition on different types of substrate and analyzed by means of micro-Raman spectrometry with spot sizes ranging from 1-5 microm. The aim was to investigate the possible application of micro-Raman spectrometry to the molecular characterization of individual aerosol particles and to assess the applicability of the various substrates in such an analysis. It was demonstrated that the molecular characterization of most inorganic particles is trivial, but organic and heterogeneous conglomerates proved to be more challenging. Spectral contributions of the substrates, currently favored for individual particle analysis, were significant. Results obtained from micro Raman spectrometry can certainly add valuable molecular information on individual aerosol particles as small as 1 microm aerodynamic diameter.


Asunto(s)
Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Microquímica/métodos , Espectrometría Raman/métodos , Tamaño de la Partícula , Proyectos Piloto
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 61(11-12): 2460-7, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16043039

RESUMEN

Research concerning the formation and removal of black crusts on various historical objects is approached from many different angles. The so-called "yellowing effect", observed after laser treatment for cleaning purposes, has also received a lot of attention. Evidence regarding this phenomenon differs considerably and the actual mechanisms are still speculated on by researchers. In an attempt to elucidate the processes involved in the yellowing effect associated with laser cleaning, a new analytical technique has been used to investigate the black crust, a region of the sample cleaned by laser irradiation at 1064 nm and another region of the same sample subjected to further laser irradiation at 355 nm, on a limestone sample from the cathedral of Seville in Spain. Micro-Raman spectrometry offers the advantage of spatial chemical characterization of the stone, based upon its molecular makeup and was performed on the bulk body of the stone. Raman and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDXS) results indicate that the surfaces cleaned by irradiation at 1064 nm and by double irradiation at 1064 and 355 nm differed in terms of their calcium sulphate, calcium oxalate and iron oxide content, and that this could contribute to the difference in colour observed.


Asunto(s)
Carbonato de Calcio/química , Color , Rayos Láser , Materiales de Construcción/análisis , Microscopía Electrónica de Rastreo , España , Espectrometría por Rayos X , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA