Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(1-1): 014604, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38366442

RESUMEN

Significant changes in the acoustic response of a fluid can be induced by the suspension of tiny, subwavelength-size discrete micro-oscillators in the fluid. We investigate how the topological properties of these oscillators, such as the mass distribution and connectivity of the oscillator parts, influence the effective dynamic density and compressibility of the fluid in which they are embedded. We demonstrate a superior, metamaterial-like response of the suspension when using micro-oscillators with a high density of low-frequency modes. Such low-frequency modes occur in loosely connected microstructures and make the system much more experimentally feasible due to the larger ultrasonic attenuation length at these frequencies. In addition, the absence of need for an intricately designed structure brings experimental implementation within reach.

2.
ACS Appl Nano Mater ; 6(17): 15807-15819, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37706065

RESUMEN

In this work, we demonstrate selected optimization changes in the simple design of filtration masks to increase particle removal efficiency (PRE) and filter quality factor by combining experiments and numerical modeling. In particular, we focus on single-layer filters fabricated from uniform thickness fibers and double-layer filters consisting of a layer of highly permeable thick fibers as a support and a thin layer of filtering electrospun nanofibers. For single-layer filters, we demonstrate performance improvement in terms of the quality factor by optimizing the geometry of the composition. We show significantly better PRE performance for filters composed of micrometer-sized fibers covered by a thin layer of electrospun nanofibers. This work is motivated and carried out in collaboration with a targeted industrial development of selected melamine-based filter nano- and micromaterials.

3.
Phys Rev E ; 101(3-1): 032601, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32289924

RESUMEN

We investigate macroscopic two-fluid effects in magnetorheological fluids generalizing a one-fluid model studied before. In the bulk of the paper we use a model in which the carrier fluid, with density ρ_{1}, moves with velocity v_{1}, while the magnetic component (density ρ_{2}) and, therefore, the magnetization and the magnetic-field-induced relaxing strain field move with velocity v_{2}. In the framework of macroscopic dynamics we find, in particular, reversible dynamic and dissipative cross-coupling terms between the magnetization and the velocity difference. Experiments to detect some of these cross-coupling terms are suggested. We also compare the results of the two-fluid model presented here with two-fluid models available for electrorheological fluids. In two appendices we discuss the simplifying assumptions made to arrive at the model used in this paper and we also outline how to detect potential deviations from this model.

4.
J Chem Phys ; 150(17): 174901, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067883

RESUMEN

An effective macroscopic model of magnetorheological fluids in the viscoelastic regime is proposed. Under the application of an external magnetic field, columns of magnetizable particles are formed in these systems. The columns are responsible for solidlike properties, such as the existence of elastic shear modulus and yield stress, and are captured by the strain field, while magnetic properties are described by the magnetization. We investigate the interplay of these variables when static shear or normal pressure is imposed in the presence of the external magnetic field. By assuming a relaxing strain field, we calculate the flow curves, i.e., the shear stress as a function of the imposed shear rate, for different values of the applied magnetic field. Focusing on the small amplitude oscillatory shear, we study the complex shear modulus, i.e., the storage and the loss moduli, as a function of the frequency. We demonstrate that already such a minimal model is capable of furnishing many of the key physical features of these systems, such as yield stress, enhancement of the shear yield stress by pressure, threshold behavior in the spirit of the frequently employed Bingham law, and several features in the frequency dependence of storage and loss moduli.

5.
Eur Phys J E Soft Matter ; 42(3): 35, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30900106

RESUMEN

We investigate the macroscopic dynamics of gels with tetrahedral/octupolar symmetry, which possess in addition a spontaneous permanent magnetization. We derive the corresponding static and dynamic macroscopic equations for a phase, where the magnetization is parallel to one of the improper fourfold tetrahedral symmetry axes. Apart from elastic strains, we take into account relative rotations between the magnetization and the elastic network. The influence of tetrahedral order on these degrees of freedom is investigated and some experiments are proposed that are specific for such a material and allow to indirectly detect tetrahedral order. We also consider the case of a transient network and predict that stationary elastic shear stresses arise when a temperature gradient is applied.

6.
Phys Rev E ; 97(4-1): 042705, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29758705

RESUMEN

We investigate the effects of flow on the dynamics of ferromagnetic nematic liquid crystals. As a model, we study the coupled dynamics of the magnetization, M, the director field, n, associated with the liquid crystalline orientational order, and the velocity field, v. We evaluate how simple shear flow in a ferromagnetic nematic is modified in the presence of small external magnetic fields, and we make experimentally testable predictions for the resulting effective shear viscosity: an increase by a factor of 2 in a magnetic field of about 20 mT. Flow alignment, a characteristic feature of classical uniaxial nematic liquid crystals, is analyzed for ferromagnetic nematics for the two cases of magnetization in or perpendicular to the shear plane. In the former case, we find that small in-plane magnetic fields are sufficient to suppress tumbling and thus that the boundary between flow alignment and tumbling can be controlled easily. In the latter case, we furthermore find a possibility of flow alignment in a regime for which one obtains tumbling for the pure nematic component. We derive the analogs of the three Miesowicz viscosities well-known from usual nematic liquid crystals, corresponding to nine different configurations. Combinations of these can be used to determine several dynamic coefficients experimentally.

7.
Phys Rev E ; 97(1-1): 012701, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29448417

RESUMEN

We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and n. The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also make concrete predictions about how reversible cross-coupling terms between the magnetization and the director could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least two eigenmodes.

8.
Phys Rev Lett ; 119(9): 097802, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28949588

RESUMEN

Hydrodynamics of complex fluids with multiple order parameters is governed by a set of dynamic equations with many material constants, of which only some are easily measurable. We present a unique example of a dynamic magneto-optic coupling in a ferromagnetic nematic liquid, in which long-range orientational order of liquid crystalline molecules is accompanied by long-range magnetic order of magnetic nanoplatelets. We investigate the dynamics of the magneto-optic response experimentally and theoretically and find out that it is significantly affected by the dissipative dynamic cross-coupling between the nematic and magnetic order parameters. The cross-coupling coefficient determined by fitting the experimental results with a macroscopic theory is of the same order of magnitude as the dissipative coefficient (rotational viscosity) that governs the reorientation of pure liquid crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA