Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091805

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the leading causes of death due to an infectious agent. Coinfection with HIV exacerbates Mtb infection outcomes in people living with HIV (PLWH). Bacillus Calmette-Guérin (BCG), the only approved TB vaccine, is effective in infants, but its efficacy in adolescents and adults is limited. Here, we investigated the immune responses elicited by BCG administered via intravenous (IV) or intradermal (ID) routes in Simian Immunodeficiency Virus (SIV)-infected Mauritian cynomolgus macaques (MCM) without the confounding effects of Mtb challenge. We assessed the impact of vaccination on T cell responses in the airway, blood, and tissues (lung, thoracic lymph nodes, and spleen), as well as the expression of cytokines, cytotoxic molecules, and key transcription factors. Our results showed that IV BCG induces a robust and sustained immune response, including tissue-resident memory T (T RM ) cells in lungs, polyfunctional CD4+ and CD8αß+ T cells expressing multiple cytokines, and CD8αß+ T cells and NK cells expressing cytotoxic effectors in airways. We also detected higher levels of mycobacteria-specific IgG and IgM in the airways of IV BCG-vaccinated MCM. Although IV BCG vaccination resulted in an influx of T RM cells in lungs of MCM with controlled SIV replication, MCM with high plasma SIV RNA (>10 5 copies/mL) typically displayed reduced T cell responses, suggesting that uncontrolled SIV or HIV replication would have a detrimental effect on IV BCG-induced protection against Mtb.

2.
Sci Immunol ; : eabo0535, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35271298

RESUMEN

SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. Here, we used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated monocytes and macrophages in the bronchoalveolar lavage (BAL) were found on days 3-4 post-infection. Virus-specific effector CD8+ and CD4+ T cells became detectable in the BAL and lung tissue on days 7-10, after viral RNA, radiologic evidence of lung inflammation, and IFN-activated myeloid cells had substantially declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs of rhesus macaques prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of antigen-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.

3.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34799399

RESUMEN

BACKGROUND: NIZ985 is a recombinant heterodimer of physiologically active interleukin (IL-)15 and IL-15 receptor alpha. In preclinical models, NIZ985 promotes cytotoxic lymphocyte proliferation, killing function, and organ/tumor infiltration, with resultant anticancer effects. In this first-in-human study, we assessed the safety, pharmacokinetics, and immune effects of NIZ985 in patients with metastatic or unresectable solid tumors. METHODS: Single agent NIZ985 dose escalation data are reported from a phase I dose escalation/expansion study of NIZ985 as monotherapy. Adult patients (N=14) received 0.25, 0.5, 1, 2 or 4 µg/kg subcutaneous NIZ985 three times weekly (TIW) for the first 2 weeks of each 28-day cycle, in an accelerated 3+3 dose escalation trial design. IL-15 and endogenous cytokines were monitored by ELISA and multiplexed electrochemiluminescent assays. Multiparameter flow cytometry assessed the frequency, phenotype and proliferation of peripheral blood mononuclear cells. Preliminary antitumor activity was assessed by overall response rate (Response Evaluation Criteria in Solid Tumors V.1.1). RESULTS: As of March 2, 2020, median treatment duration was 7.5 weeks (range 1.1-77.1). Thirteen patients had discontinued and one (uveal melanoma) remains on treatment with stable disease. Best clinical response was stable disease (3 of 14 patients; 21%). The most frequent adverse events (AEs) were circular erythematous injection site reactions (100%), chills (71%), fatigue (57%), and fever (50%). Treatment-related grade 3/4 AEs occurred in six participants (43%); treatment-related serious AEs (SAEs) in three (21%). The per-protocol maximum tolerated dose was not reached. Pharmacokinetic accumulation of serum IL-15 in the first week was followed by significantly lower levels in week 2, likely due to more rapid cytokine consumption by an expanding lymphocyte pool. NIZ985 treatment was associated with increases in several cytokines, including interferon (IFN)-γ, IL-18, C-X-C motif chemokine ligand 10, and tumor necrosis factor-ß, plus significant induction of cytotoxic lymphocyte proliferation (including natural killer and CD8+ T cells), increased CD16+ monocytes, and increased CD163+ macrophages at injection sites. CONCLUSIONS: Subcutaneous NIZ985 TIW was generally well tolerated in patients with advanced cancer and produced immune activation paralleling preclinical observations, with induction of IFN-γ and proliferation of cytotoxic lymphocytes. Due to delayed SAEs at the two highest dose levels, administration is being changed to once-weekly in a revised protocol, as monotherapy and combined with checkpoint inhibitor spartalizumab. These alterations are expected to maximize the potential of NIZ985 as a novel immunotherapy. TRIAL REGISTRATION NUMBER: NCT02452268.


Asunto(s)
Interleucina-15/administración & dosificación , Interleucina-15/agonistas , Neoplasias/tratamiento farmacológico , Receptores de Interleucina-15/administración & dosificación , Adulto , Anciano , Femenino , Humanos , Inmunoterapia , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Multimerización de Proteína , Proteínas Recombinantes/administración & dosificación
4.
Sci Transl Med ; 13(576)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441422

RESUMEN

Organ infiltration by donor T cells is critical to the development of acute graft-versus-host disease (aGVHD) in recipients after allogeneic hematopoietic stem cell transplant (allo-HCT). However, deconvoluting the transcriptional programs of newly recruited donor T cells from those of tissue-resident T cells in aGVHD target organs remains a challenge. Here, we combined the serial intravascular staining technique with single-cell RNA sequencing to dissect the tightly connected processes by which donor T cells initially infiltrate tissues and then establish a pathogenic tissue residency program in a rhesus macaque allo-HCT model that develops aGVHD. Our results enabled creation of a spatiotemporal map of the transcriptional programs controlling donor CD8+ T cell infiltration into the primary aGVHD target organ, the gastrointestinal (GI) tract. We identified the large and small intestines as the only two sites demonstrating allo-specific, rather than lymphodepletion-driven, T cell infiltration. GI-infiltrating donor CD8+ T cells demonstrated a highly activated, cytotoxic phenotype while simultaneously developing a canonical tissue-resident memory T cell (TRM) transcriptional signature driven by interleukin-15 (IL-15)/IL-21 signaling. We found expression of a cluster of genes directly associated with tissue invasiveness, including those encoding adhesion molecules (ITGB2), specific chemokines (CCL3 and CCL4L1) and chemokine receptors (CD74), as well as multiple cytoskeletal proteins. This tissue invasion transcriptional signature was validated by its ability to discriminate the CD8+ T cell transcriptome of patients with GI aGVHD from those of GVHD-free patients. These results provide insights into the mechanisms controlling tissue occupancy of target organs by pathogenic donor CD8+ TRM cells during aGVHD in primate transplant recipients.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Enfermedad Aguda , Animales , Linfocitos T CD8-positivos , Humanos , Macaca mulatta , Donantes de Tejidos
5.
Sci Transl Med ; 13(576)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441427

RESUMEN

Leukocyte trafficking enables detection of pathogens, immune responses, and immune memory. Dysregulation of leukocyte trafficking is often found in disease, highlighting its important role in homeostasis and the immune response. Whereas some of the molecular mechanisms mediating leukocyte trafficking are understood, little is known about the regulation of trafficking, including trafficking kinetics and its impact on immune homeostasis. We developed a method of serial intravascular staining (SIVS) to measure trafficking kinetics in nonhuman primates using infusions of fluorescently labeled antibodies to label circulating leukocytes. Because antibody infusions labeled only leukocytes in the blood, cells were "barcoded" according to their location at the time of each infusion, providing positional histories that could be used to infer trafficking kinetics. We used SIVS and multiparameter flow cytometry to quantitate cellular trafficking into lymphoid tissues of healthy animals at homeostasis and to identify perivascular cells that could be unique to nonlymphoid organs. To investigate how these parameters could be influenced during disease, SIVS was used to quantify lymphocyte trafficking in macaques infected with the bacterial pathogen Mycobacterium tuberculosis and to enumerate intravascular leukocytes in lung granulomas. We showed that whereas most cells in lung granulomas were localized there for more than 24 hours, granulomas were dynamic with a slow continual cellular influx, the rate of which predicted clearance of M. tuberculosis from the granulomas. SIVS, in combination with intracellular staining and multiparametric flow cytometry, is a powerful method to quantify the kinetics of leukocyte trafficking in nonhuman primates in vivo.


Asunto(s)
Mycobacterium tuberculosis , Animales , Cinética , Leucocitos , Tejido Linfoide , Coloración y Etiquetado
6.
Front Immunol ; 12: 772332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095846

RESUMEN

The in vivo tissue distribution and trafficking patterns of natural killer (NK) cells remain understudied. Animal models can help bridge the gap, and rhesus macaque (RM) primates faithfully recapitulate key elements of human NK cell biology. Here, we profiled the tissue distribution and localization patterns of three NK cell subsets across various RM tissues. We utilized serial intravascular staining (SIVS) to investigate the tissue trafficking kinetics at steady state and during recovery from CD16 depletion. We found that at steady state, CD16+ NK cells were selectively retained in the vasculature while CD56+ NK cells had a shorter residence time in peripheral blood. We also found that different subsets of NK cells had distinct trafficking kinetics to and from the lymph node as well as other lymphoid and non-lymphoid tissues. Lastly, we found that following administration of CD16-depleting antibody, CD16+ NK cells and their putative precursors retained a high proportion of continuously circulating cells, suggesting that regeneration of the CD16 NK compartment may take place in peripheral blood or the perivascular compartments of tissues.


Asunto(s)
Células Asesinas Naturales/inmunología , Macaca mulatta/inmunología , Animales , Antígeno CD56/inmunología , Cinética , Ganglios Linfáticos/inmunología , Coloración y Etiquetado
7.
Clin Cancer Res ; 25(16): 4945-4954, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31142503

RESUMEN

PURPOSE: The first-in-human clinical trial with human bolus intravenous infusion IL15 (rhIL15) was limited by treatment-associated toxicity. Here, we report toxicity, immunomodulation, and clinical activity of rhIL15 administered as a 10-day continuous intravenous infusion (CIV) to patients with cancers in a phase I trial. PATIENTS AND METHODS: Patients received treatment for 10 days with CIV rhIL15 in doses of 0.125, 0.25, 0.5, 1, 2, or 4 µg/kg/day. Correlative laboratory tests included IL15 pharmacokinetic (PK) analyses, and assessment of changes in lymphocyte subset numbers. RESULTS: Twenty-seven patients were treated with rhIL15; 2 µg/kg/day was identified as the MTD. There were eight serious adverse events including two bleeding events, papilledema, uveitis, pneumonitis, duodenal erosions, and two deaths (one due to likely drug-related gastrointestinal ischemia). Evidence of antitumor effects was observed in several patients, but stable disease was the best response noted. Patients in the 2 µg/kg/day group had a 5.8-fold increase in number of circulating CD8+ T cells, 38-fold increase in total NK cells, and 358-fold increase in CD56bright NK cells. Serum IL15 concentrations were markedly lower during the last 3 days of infusion. CONCLUSIONS: This phase I trial identified the MTD for CIV rhIL15 and defined a treatment regimen that produced significant expansions of CD8+ T and NK effector cells in circulation and tumor deposits. This regimen has identified several biological features, including dramatic increases in numbers of NK cells, supporting trials of IL15 with anticancer mAbs to increase antibody-dependent cell-mediated cytotoxicity and anticancer efficacy.


Asunto(s)
Interleucina-15/administración & dosificación , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Subgrupos Linfocitarios/efectos de los fármacos , Subgrupos Linfocitarios/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Citocinas/metabolismo , Femenino , Humanos , Inmunohistoquímica , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/farmacocinética , Inmunomodulación/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Infusiones Intravenosas , Interleucina-15/efectos adversos , Interleucina-15/farmacocinética , Células Asesinas Naturales/metabolismo , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Recuento de Linfocitos , Subgrupos Linfocitarios/metabolismo , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Resultado del Tratamiento
8.
Nat Commun ; 10(1): 948, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30814513

RESUMEN

An array of carbohydrates masks the HIV-1 surface protein Env, contributing to the evasion of humoral immunity. In most HIV-1 isolates 'glycan holes' occur due to natural sequence variation, potentially revealing the underlying protein surface to the immune system. Here we computationally design epitopes that mimic such surface features (carbohydrate-occluded neutralization epitopes or CONE) of Env through 'epitope transplantation', in which the target region is presented on a carrier protein scaffold with preserved structural properties. Scaffolds displaying the four CONEs are examined for structure and immunogenicity. Crystal structures of two designed proteins reflect the computational models and accurately mimic the native conformations of CONEs. The sera from rabbits immunized with several CONE immunogens display Env binding activity. Our method determines essential structural elements for targets of protective antibodies. The ability to design immunogens with high mimicry to viral proteins also makes possible the exploration of new templates for vaccine development.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/biosíntesis , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/inmunología , Fenómenos Biofísicos , Carbohidratos/química , Carbohidratos/inmunología , Cristalografía por Rayos X , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Antígenos VIH/química , Antígenos VIH/genética , Antígenos VIH/inmunología , Humanos , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
9.
J Exp Med ; 215(1): 217-232, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29141868

RESUMEN

The geographic distribution of hematopoiesis at a clonal level is of interest in understanding how hematopoietic stem and progenitor cells (HSPCs) and their progeny interact with bone marrow (BM) niches during regeneration. We tagged rhesus macaque autologous HSPCs with genetic barcodes, allowing clonal tracking over time and space after transplantation. We found marked geographic segregation of CD34+ HSPCs for at least 6 mo posttransplantation, followed by very gradual clonal mixing at different BM sites over subsequent months to years. Clonal mapping was used to document local production of granulocytes, monocytes, B cells, and CD56+ natural killer (NK) cells. In contrast, CD16+CD56- NK cells were not produced in the BM, and in fact were clonally distinct from multipotent progenitors producing all other lineages. Most surprisingly, we documented local BM production of CD3+ T cells early after transplantation, using both clonal mapping and intravascular versus tissue-resident T cell staining, suggesting a thymus-independent T cell developmental pathway operating during BM regeneration, perhaps before thymic recovery.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Rastreo Celular , Evolución Clonal , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Animales , Biomarcadores , Médula Ósea , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Linaje de la Célula , Rastreo Celular/métodos , Microambiente Celular , Trasplante de Células Madre Hematopoyéticas , Inmunofenotipificación , Ganglios Linfáticos/citología , Ganglios Linfáticos/metabolismo , Macaca mulatta , Factores de Tiempo
10.
J Virol ; 87(13): 7218-33, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23616655

RESUMEN

Understanding human immunodeficiency virus type 1 (HIV-1) transmission is central to developing effective prevention strategies, including a vaccine. We compared phenotypic and genetic variation in HIV-1 env genes from subjects in acute/early infection and subjects with chronic infections in the context of subtype C heterosexual transmission. We found that the transmitted viruses all used CCR5 and required high levels of CD4 to infect target cells, suggesting selection for replication in T cells and not macrophages after transmission. In addition, the transmitted viruses were more likely to use a maraviroc-sensitive conformation of CCR5, perhaps identifying a feature of the target T cell. We confirmed an earlier observation that the transmitted viruses were, on average, modestly underglycosylated relative to the viruses from chronically infected subjects. This difference was most pronounced in comparing the viruses in acutely infected men to those in chronically infected women. These features of the transmitted virus point to selective pressures during the transmission event. We did not observe a consistent difference either in heterologous neutralization sensitivity or in sensitivity to soluble CD4 between the two groups, suggesting similar conformations between viruses from acute and chronic infection. However, the presence or absence of glycosylation sites had differential effects on neutralization sensitivity for different antibodies. We suggest that the occasional absence of glycosylation sites encoded in the conserved regions of env, further reduced in transmitted viruses, could expose specific surface structures on the protein as antibody targets.


Asunto(s)
Variación Genética , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Receptores CCR5/metabolismo , Linfocitos T/virología , Proteínas del Envoltorio Viral/metabolismo , Secuencia de Bases , Clonación Molecular , Análisis por Conglomerados , Estudios de Cohortes , Femenino , Glicosilación , Infecciones por VIH/prevención & control , Infecciones por VIH/transmisión , Humanos , Malaui , Masculino , Datos de Secuencia Molecular , Pruebas de Neutralización , Filogenia , Conformación Proteica , Receptores CCR5/química , Alineación de Secuencia , Análisis de Secuencia de ADN , Factores Sexuales , Sudáfrica , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/genética , Replicación Viral/fisiología
11.
PLoS Pathog ; 9(4): e1003294, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23593004

RESUMEN

RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1(NL4-3). One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1(NL4-3) also occur at the 5' polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve.


Asunto(s)
Genoma Viral , VIH-1/genética , Conformación de Ácido Nucleico , ARN Viral/química , ARN Viral/genética , Virus de la Inmunodeficiencia de los Simios/genética , Animales , Composición de Base , Secuencia de Bases , Sitios de Unión , Evolución Molecular , Mutación del Sistema de Lectura , Genes env/genética , Humanos , Ratones , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA