Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Br J Nutr ; 131(3): 461-473, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-37641937

RESUMEN

Rhodiola rosea (RR) is a plant whose bioactive components may function as adaptogens, thereby increasing resistance to stress and improving overall resilience. Some of these effects may influence exercise performance and adaptations. Based on studies of rodents, potential mechanisms for the ergogenic effects of RR include modulation of energy substrate stores and use, reductions in fatigue and muscle damage and altered antioxidant activity. At least sixteen investigations in humans have explored the potential ergogenicity of RR. These studies indicate acute RR supplementation (∼200 mg RR containing ∼1 % salidroside and ∼3 % rosavin, provided 60 min before exercise) may prolong time-to-exhaustion and improve time trial performance in recreationally active males and females, with limited documented benefits of chronic supplementation. Recent trials providing higher doses (∼1500 to 2400 mg RR/d for 4­30 d) have demonstrated ergogenic effects during sprints on bicycle ergometers and resistance training in trained and untrained adults. The effects of RR on muscle damage, inflammation, energy system modulation, antioxidant activity and perceived exertion are presently equivocal. Collectively, it appears that adequately dosed RR enhances dimensions of exercise performance and related outcomes for select tasks. However, the current literature does not unanimously show that RR is ergogenic. Variability in supplementation dose and duration, concentration of bioactive compounds, participant characteristics, exercise tests and statistical considerations may help explain these disparate findings. Future research should build on the longstanding use of RR and contemporary clinical trials to establish the conditions in which supplementation facilitates exercise performance and adaptations.


Asunto(s)
Sustancias para Mejorar el Rendimiento , Rhodiola , Masculino , Adulto , Femenino , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Antioxidantes/farmacología , Rhodiola/química , Sustancias para Mejorar el Rendimiento/farmacología , Ejercicio Físico/fisiología
2.
Front Nutr ; 7: 116, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850937

RESUMEN

Shift work is commonplace in modern societies, and shift workers are predisposed to the development of numerous chronic diseases. Disruptions to the circadian systems of shift workers are considered important contributors to the biological dysfunction these people frequently experience. Because of this, understanding how to alter shift work and zeitgeber (time cue) schedules to enhance circadian system function is likely to be key to improving the health of shift workers. While light exposure is the most important zeitgeber for the central clock in the circadian system, diet and exercise are plausible zeitgebers for circadian clocks in many tissues. We know little about how different zeitgebers interact and how to tailor zeitgeber schedules to the needs of individuals; however, in this review we share some guidelines to help shift workers adapt to their work schedules based on our current understanding of circadian biology. We focus in particular on the importance of diet timing and composition. Going forward, developments in phenotyping and "envirotyping" methods may be important to understanding how to optimise shift work. Non-invasive, multimodal, comprehensive phenotyping using multiple sources of time-stamped data may yield insights that are critical to the care of shift workers. Finally, the impact of these advances will be reduced without modifications to work environments to make it easier for shift workers to engage in behaviours conducive to their health. Integrating findings from behavioural science and ergonomics may help shift workers make healthier choices, thereby amplifying the beneficial effects of improved lifestyle prescriptions for these people.

3.
Am J Epidemiol ; 188(10): 1858-1867, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31318012

RESUMEN

The Oxford WebQ is an online 24-hour dietary questionnaire that is appropriate for repeated administration in large-scale prospective studies, including the UK Biobank study and the Million Women Study. We compared the performance of the Oxford WebQ and a traditional interviewer-administered multiple-pass 24-hour dietary recall against biomarkers for protein, potassium, and total sugar intake and total energy expenditure estimated by accelerometry. We recruited 160 participants in London, United Kingdom, between 2014 and 2016 and measured their biomarker levels at 3 nonconsecutive time points. The measurement error model simultaneously compared all 3 methods. Attenuation factors for protein, potassium, total sugar, and total energy intakes estimated as the mean of 2 applications of the Oxford WebQ were 0.37, 0.42, 0.45, and 0.31, respectively, with performance improving incrementally for the mean of more measures. Correlation between the mean value from 2 Oxford WebQs and estimated true intakes, reflecting attenuation when intake is categorized or ranked, was 0.47, 0.39, 0.40, and 0.38, respectively, also improving with repeated administration. These correlations were similar to those of the more administratively burdensome interviewer-based recall. Using objective biomarkers as the standard, the Oxford WebQ performs well across key nutrients in comparison with more administratively burdensome interviewer-based 24-hour recalls. Attenuation improves when the average value is taken over repeated administrations, reducing measurement error bias in assessment of diet-disease associations.


Asunto(s)
Encuestas sobre Dietas/métodos , Acelerometría , Adulto , Biomarcadores/sangre , Biomarcadores/orina , Proteínas Sanguíneas/análisis , Dióxido de Carbono/metabolismo , Dieta/estadística & datos numéricos , Carbohidratos de la Dieta/administración & dosificación , Ingestión de Energía , Metabolismo Energético , Femenino , Humanos , Entrevistas como Asunto , Londres , Masculino , Recuerdo Mental , Sistemas en Línea , Consumo de Oxígeno , Potasio/sangre , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
4.
BMC Med ; 16(1): 136, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30089491

RESUMEN

BACKGROUND: Online dietary assessment tools can reduce administrative costs and facilitate repeated dietary assessment during follow-up in large-scale studies. However, information on bias due to measurement error of such tools is limited. We developed an online 24-h recall (myfood24) and compared its performance with a traditional interviewer-administered multiple-pass 24-h recall, assessing both against biomarkers. METHODS: Metabolically stable adults were recruited and completed the new online dietary recall, an interviewer-based multiple pass recall and a suite of reference measures. Longer-term dietary intake was estimated from up to 3 × 24-h recalls taken 2 weeks apart. Estimated intakes of protein, potassium and sodium were compared with urinary biomarker concentrations. Estimated total sugar intake was compared with a predictive biomarker and estimated energy intake compared with energy expenditure measured by accelerometry and calorimetry. Nutrient intakes were also compared to those derived from an interviewer-administered multiple-pass 24-h recall. RESULTS: Biomarker samples were received from 212 participants on at least one occasion. Both self-reported dietary assessment tools led to attenuation compared to biomarkers. The online tools resulted in attenuation factors of around 0.2-0.3 and partial correlation coefficients, reflecting ranking intakes, of approximately 0.3-0.4. This was broadly similar to the more administratively burdensome interviewer-based tool. Other nutrient estimates derived from myfood24 were around 10-20% lower than those from the interviewer-based tool, with wide limits of agreement. Intraclass correlation coefficients were approximately 0.4-0.5, indicating consistent moderate agreement. CONCLUSIONS: Our findings show that, whilst results from both measures of self-reported diet are attenuated compared to biomarker measures, the myfood24 online 24-h recall is comparable to the more time-consuming and costly interviewer-based 24-h recall across a range of measures.


Asunto(s)
Biomarcadores/química , Técnicas y Procedimientos Diagnósticos/estadística & datos numéricos , Dieta/métodos , Evaluación Nutricional , Adolescente , Adulto , Anciano , Educación a Distancia , Femenino , Humanos , Entrevistas como Asunto , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Proyectos de Investigación , Encuestas y Cuestionarios , Factores de Tiempo , Adulto Joven
5.
PLoS One ; 12(7): e0182195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28750055

RESUMEN

Ever more evidence associates short sleep with increased risk of metabolic diseases such as obesity, which may be related to a predisposition to non-homeostatic eating. Few studies have concurrently determined associations between sleep duration and objective measures of metabolic health as well as sleep duration and diet, however. We therefore analyzed associations between sleep duration, diet and metabolic health markers in UK adults, assessing associations between sleep duration and 1) adiposity, 2) selected metabolic health markers and 3) diet, using National Diet and Nutrition Survey data. Adults (n = 1,615, age 19-65 years, 57.1% female) completed questions about sleep duration and 3 to 4 days of food diaries. Blood pressure and waist circumference were recorded. Fasting blood lipids, glucose, glycated haemoglobin (HbA1c), thyroid hormones, and high-sensitivity C-reactive protein (CRP) were measured in a subset of participants. We used regression analyses to explore associations between sleep duration and outcomes. After adjustment for age, ethnicity, sex, smoking, and socioeconomic status, sleep duration was negatively associated with body mass index (-0.46 kg/m2 per hour, 95% CI -0.69 to -0.24 kg/m2, p < 0.001) and waist circumference (-0.9 cm per hour, 95% CI -1.5 to -0.3cm, p = 0.004), and positively associated with high-density lipoprotein cholesterol (0.03 mmol/L per hour, 95% CI 0.00 to 0.05, p = 0.03). Sleep duration tended to be positively associated with free thyroxine levels and negatively associated with HbA1c and CRP (p = 0.09 to 0.10). Contrary to our hypothesis, sleep duration was not associated with any dietary measures (p ≥ 0.14). Together, our findings show that short-sleeping UK adults are more likely to have obesity, a disease with many comorbidities.


Asunto(s)
Índice de Masa Corporal , Dieta , Metabolómica , Encuestas Nutricionales , Sueño/fisiología , Adolescente , Adulto , Niño , Preescolar , Femenino , Salud , Humanos , Lactante , Masculino , Reino Unido/epidemiología , Circunferencia de la Cintura , Adulto Joven
6.
Endocr Rev ; 37(6): 584-608, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27763782

RESUMEN

Circadian (∼24-hour) timing systems pervade all kingdoms of life and temporally optimize behavior and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behavior and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these, too, are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioral and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important.


Asunto(s)
Fenómenos Cronobiológicos/fisiología , Privación de Sueño , Trastornos del Sueño del Ritmo Circadiano , Fenómenos Cronobiológicos/genética , Humanos , Privación de Sueño/etiología , Privación de Sueño/genética , Privación de Sueño/metabolismo , Privación de Sueño/terapia , Trastornos del Sueño del Ritmo Circadiano/etiología , Trastornos del Sueño del Ritmo Circadiano/genética , Trastornos del Sueño del Ritmo Circadiano/metabolismo , Trastornos del Sueño del Ritmo Circadiano/terapia
7.
Br J Nutr ; 116(3): 434-42, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27221157

RESUMEN

The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. 'High-fat diets' (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Conducta Alimentaria , Fenómenos Fisiológicos de la Nutrición , Estado Nutricional/fisiología , Obesidad/etiología , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Obesidad/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA