Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(5): 3076-3086, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38634234

RESUMEN

Despite the wide range of analytical tools available for the characterization of cellulose, the in-depth characterization of inhomogeneous, layered cellulose fiber structures remains a challenge. When treating fibers or spinning man-made fibers, the question always arises as to whether the changes in the fiber structure affect only the surface or the entire fiber. Here, we developed an analysis tool based on the sequential limited dissolution of cellulose fiber layers. The method can reveal potential differences in fiber properties along the cross-sectional profile of natural or man-made cellulose fibers. In this analytical approach, carbonyl groups are labeled with a carbonyl selective fluorescence label (CCOA), after which thin fiber layers are sequentially dissolved with the solvent system DMAc/LiCl (9% w/v) and analyzed with size exclusion chromatography coupled with light scattering and fluorescence detection. The analysis of these fractions allowed for the recording of the changes in the chemical structure across the layers, resulting in a detailed cross-sectional profile of the different functionalities and molecular weight distributions. The method was optimized and tested in practice with LPMO (lytic polysaccharide monooxygenase)-treated cotton fibers, where it revealed the depth of fiber modification by the enzyme.


Asunto(s)
Celulosa , Celulosa/química , Fibra de Algodón , Cromatografía en Gel/métodos
2.
Carbohydr Polym ; 330: 121816, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38368098

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are excellent candidates for enzymatic functionalization of natural polysaccharides, such as cellulose or chitin, and are gaining relevance in the search for renewable biomaterials. Here, we assessed the cellulose fiber modification potential and catalytic performance of eleven cellulose-active fungal AA9-type LPMOs, including C1-, C4-, and C1/C4-oxidizing LPMOs with and without CBM1 carbohydrate-binding modules, on cellulosic substrates with different degrees of crystallinity and polymer chain arrangement, namely, Cellulose I, Cellulose II, and amorphous cellulose. The potential of LPMOs for cellulose fiber modification varied among the LPMOs and depended primarily on operational stability and substrate binding, and, to some extent, also on regioselectivity and domain structure. While all tested LPMOs were active on natural Cellulose I-type fibers, activity on the Cellulose II allomorph was almost exclusively detected for LPMOs containing a CBM1 and LPMOs with activity on soluble hemicelluloses and cello-oligosaccharides, for example NcAA9C from Neurospora crassa. The single-domain variant of NcAA9C oxidized the cellulose fibers to a higher extent than its CBM-containing natural variant and released less soluble products, indicating a more dispersed oxidation pattern without a CBM. Our findings reveal great functional variation among cellulose-active LPMOs, laying the groundwork for further LPMO-based cellulose engineering.


Asunto(s)
Celulosa , Polisacáridos , Celulosa/metabolismo , Polisacáridos/metabolismo , Oxidación-Reducción , Oxigenasas de Función Mixta/química , Oligosacáridos/metabolismo , Estrés Oxidativo
3.
ChemSusChem ; : e202301840, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240610

RESUMEN

We present an approach to overcome the challenges associated with the increasing demand of high-throughput characterization of technical lignins, a key resource in emerging bioeconomies. Our approach offers a resort from the lack of direct, simple, and low-cost analytical techniques for lignin characterization by employing multivariate calibration models based on infrared (IR) spectroscopy to predict structural properties of lignins (i. e., functionality, molar mass). By leveraging a comprehensive database of over 500 well-characterized technical lignin samples - a factor of 10 larger than previously used sets - our chemometric models achieved high levels of quality and statistical confidence for the determination of different functional group contents (RMSEPs of 4-16 %). However, the statistical moments of the molar mass distribution are still best determined by size-exclusion chromatography. Analyses of over 500 technical lignins offered also a great opportunity to provide information on the general variability in kraft lignins and lignosulfonates (from different origins). Overall, the effected savings in analysis time (>7 h), resources, and required sample mass combined with non-destructiveness of the measurement satisfy key demands for efficient high-throughput lignin analyses. Finally, we discuss the advantages, disadvantages, and limitations of our approach, along with critical insights into the associated chemical-analytical and spectroscopic challenges.

4.
Carbohydr Polym ; 328: 121696, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220335

RESUMEN

Enzymatic treatment of cellulosic fibres is a green alternative to classical chemical modification. For many applications, mild procedures for cellulose alteration are sufficient, in which the fibre structure and, therefore, the mechanical performance of cellulosic fibres are preserved. Lytic polysaccharide monooxygenases (LPMOs) bear a great potential to become a green reagent for such targeted cellulose modifications. An obstacle for wide implementation of LPMOs in tailored cellulose chemistry is the lack of suitable techniques to precisely monitor the LPMO impact on the polymer. Soluble oxidized cello-oligomers can be quantified using chromatographic and mass-spectrometric techniques. A considerable portion of the oxidized sites, however, remain on the insoluble cellulose fibres, and their quantification is difficult. Here, we describe a method for the simultaneous quantification of oxidized sites on cellulose fibres and changes in their molar mass distribution after treatment with LPMOs. The method is based on quantitative, heterogeneous, carbonyl-selective labelling with a fluorescent label (CCOA) followed by cellulose dissolution and size-exclusion chromatography (SEC). Application of the method to reactions of seven different LPMOs with pure cellulose fibres revealed pronounced functional differences between the enzymes, showing that this CCOA/SEC/MALS method is a promising tool to better understand the catalytic action of LPMOs.


Asunto(s)
Oxigenasas de Función Mixta , Polisacáridos , Oxigenasas de Función Mixta/química , Celulosa , Espectrometría de Masas , Cromatografía
5.
ChemSusChem ; 17(5): e202300791, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-37923704

RESUMEN

The derivatization of dialdehyde cellulose (DAC) has received increasing attention in the development of sustainable thermoplastics. In this study, a series of dialcohol celluloses were generated by borohydride reduction, which exhibited glass transition temperature (Tg ) values ranging from 23 to 109 °C, depending on the initial degree of oxidation (DO) of the DAC intermediate. However, the DAC derivatives did not exhibit thermoplastic behavior when the DO of the modified DAC was below 26 %. The influence of introduced side chains was highlighted by comparing DAC-based thermoplastic materials obtained by either oximation or borohydride reduction. Our results provide insights into the generation of DAC-based thermoplastics and highlight a strategy for tailoring the Tg by adjusting the DO during the periodate oxidation step and selecting appropriate substituents in subsequent modifications.

6.
Carbohydr Polym ; 326: 121611, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142095

RESUMEN

Hemicellulose and pectin are noteworthy components of historical European rag papers, and have not been studied in detail so far. Rag papers were made from used textiles, and fiber-based utilities, such as ropes and bags. These had been prepared until the mid-19th century from plant-based fibers. Their polysaccharide composition could relate to their condition and history. This information can be expected to hold importance for the preservation and conservation of historical objects. We investigated a collection of rag papers of different age for their composition of non-cellulosic polysaccharides, and compared the findings with modern rag papers and wood pulps. Furthermore, a non-destructive determination of the hemicellulose and pectin content by near-infrared spectroscopy was developed. Historical rag papers had a lower hemicellulose/pectin content than pulps; the fractions of rhamnose, galactose, and arabinose were higher, while xylose was lower. In modern rag papers, xylose tended to be at the higher end of the range, which suggests a degradation of hemicelluloses/pectin over time or a change in raw materials and manufacturing. Rag papers also showed higher crystallinity than wood pulp papers. These findings provide insights into rag paper characteristics and offer potential classification methods.


Asunto(s)
Polisacáridos , Xilosa , Xilosa/metabolismo , Polisacáridos/química , Pectinas/metabolismo , Madera/química , Arabinosa/análisis
7.
Biomacromolecules ; 25(1): 200-212, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38112036

RESUMEN

The correlation between lignin structure, its properties, and performance is crucial for lignin engineering in high-value products. Currently, a widespread approach is to compare lignins which differ by more than one parameter (i.e., Kraft vs organosolv vs lignosulfonates) in various applications by attributing the changes in their properties/performance specifically to a certain variable (i.e., phenolic -OH groups). Herein, we suggest a novel approach to overcome this issue by changing only one variable at a time while keeping all others constant before investigating the lignin properties/performance. Indulin AT (Ind-AT), a softwood Kraft lignin, was chosen as the model substrate for this study. Selective (analytical) lignin modifications were used to mask/convert specific functionalities, such as aliphatic (AliphOH) including benzylic -OH (BenzOH) and phenolic -OH (PhOH) groups, carboxyl groups (-COOH) and carbonyl groups (CO) via methylation, acetylation, and reduction. The selectivity and completeness of the reactions were verified by comprehensive NMR analysis (31P and 2D HSQC) of the modified preparations together with state-of-the-art molar mass (MM) characterization. Methylene blue (MB) adsorption, antioxidant activity, and glass transition temperature (Tg) were used to demonstrate and compare the properties/performance of the obtained modified lignins. We found that the contribution of different functionalities in the adsorption of MB follows the trend BenzOH > -COOH > AlipOH > PhOH. Noteworthy, benzylic -OH contributes ca. 3 and 2.3 times more than phenolic and aliphatic -OH, respectively. An 11% and 17% increase of Tg was observed with respect to the unmodified Indulin by methylating benzylic -OH groups and through reduction, respectively, while full acetylation/methylation of aliphatic and phenolic -OH groups resulted in lower Tg. nRSI experiments revealed that phenolic -OH play a crucial role in increasing the antioxidant activity of lignin, while both aliphatic -OH groups and -COOHs possess a detrimental effect, most likely due to H-bonding. Overall, for the first time, we provide here a reliable approach for the engineering of lignin-based products in high value applications by disclosing the role of specific lignin functionalities.


Asunto(s)
Antioxidantes , Lignina , Lignina/química , Temperatura , Espectroscopía de Resonancia Magnética , Peso Molecular
8.
ACS Omega ; 8(30): 27621-27633, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546644

RESUMEN

Lignin, the world's second most abundant biopolymer, has been investigated as a precursor of polyurethanes due to its high availability and large amount of hydroxyls present in its structure. Lignin-based polyurethanes (LPUs) are usually synthesized from the reaction between lignin, previously modified or not, and diisocyanates. In the present work, LPUs were prepared, for the first time, using the blocked isocyanate approach. For that, unmodified and hydroxypropylated Kraft lignins were reacted with 4,4'-methylene diphenyl diisocyanate in the presence of diisopropylamine (blocking agent). Castor oil was employed as a second polyol. The chemical modification was confirmed by 31P nuclear magnetic resonance (31P NMR) analysis, and the structure of both lignins was elucidated by a bidimensional NMR technique. The LPUs' prepolymerization kinetics was investigated by temperature-modulated optical refractometry and Fourier-transform infrared spectroscopy. The positive effect of hydroxypropylation on the reactivity of the Kraft lignin was verified. The structure of LPU prepolymers was accessed by bidimensional NMR. The formation of hindered urea-terminated LPU prepolymers was confirmed. From the results, the feasibility of the blocked isocyanate approach to obtain LPUs was proven. Lastly, single-lap shear tests were performed and revealed the potential of LPU prepolymers as monocomponent adhesives.

9.
RSC Adv ; 13(14): 9479-9490, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36968046

RESUMEN

A new chemical modification protocol to generate N-lignins is presented, based on Indulin AT and Mg2+-lignosulfonate. The already known ammonoxidation reaction in liquid phase was used as a starting point and stepwise optimised towards a full solid-state approach. The "classical" liquid ammonoxidation products, the transition products from the optimization trials, as well as the "solid-state" products were comprehensively analysed and compared to the literature. The N-lignins obtained with the conventional ammonoxidation protocol showed the same properties as reported. Their molar mass distributions and the hydroxy group contents, hitherto not accessible due to solubility problems, were measured according to a recently reported protocol. N-Indulin showed an N-content up to 11 wt% and N-lignosulfonate up to 16 wt%. The transition experiments from liquid to solid-state gave insights into the influence of chemical components and reaction conditions. The use of a single chemical, the urea-hydrogen peroxide complex (UHP, "carbamide peroxide"), was sufficient to generate N-lignins with satisfying N-content. This chemical acts both as an N-source and as the oxidant. Following the optimization, a series of solid-state ammonoxidation tests were carried out. High N-contents of 10% in the case of Indulin and 11% in the case of lignosulfonate were obtained. By varying the ratio of UHP to lignin, the N-content can be controlled. Structural analysis showed that the N is organically bound to the lignin, similar to the "classical" ammonoxidation products obtained under homogeneous conditions. Overall, a new ammonoxidation protocol was developed which does not require an external gas supply nor liquids or dissolved reactants. This opens the possibility for carrying out the lignin modification in closed continuous reactor systems, such as extruders. The new, facile solid-state protocol will hopefully help N-lignins to find more consideration as a fertilizing material and in soil-improving materials.

10.
Carbohydr Polym ; 310: 120691, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36925234

RESUMEN

Periodate oxidation of cellulose to produce "dialdehyde cellulose" (DAC) has lately received increasing attention in sustainable materials development. Despite the longstanding research interest and numerous reported studies, there is still an enormous variation in the proposed preparation and work-up protocols. This apparently reduces comparability and causes reproducibility problems in DAC research. Two simple but prevalent work-up protocols, namely glycol quenching and filtration/washing, were critically examined and compared, resulting in this cautionary note. Various analytical techniques were applied to quantify residual iodine species and organic contaminations from quenching side reactions. The commonly practiced glycol addition cannot remove all oxidising iodine compounds. Both glycol and the formed formaldehyde are incorporated into DAC's polymeric structure. Quenching of excess periodate with glycol can thus clearly be discouraged. Instead, simple washing protocols are recommended which do not bear the risk of side reactions with organic contaminants. While simple washing was sufficient for mildly oxidised celluloses, higher oxidised samples were more likely to trap residual (per)iodate, as determined by thiosulfate titration. For work-up, simple washing with water is proposed while determining potential iodine contaminations after washing with a simple colorimetric test and, if needed, removal of residual periodate by washing with an aqueous sodium thiosulfate solution.

11.
J Agric Food Chem ; 71(1): 580-591, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36542797

RESUMEN

Recent studies have suggested that there are significant amounts of various alkyl ether (Alk-O-Alk; Alk = alkyl) moieties in a spruce native lignin preparation, milled wood lignin (SMWL). However, the comprehensive NMR assignment to these moieties has not been addressed yet. This study focused on investigating different types of Alk-O-Alk structures at the α- and γ-positions of the lignin side chain in an heteronuclear single-quantum coherence (HSQC) spectrum of SMWL using experimental NMR data of lignin and synthesized model compounds. Ambiguous structural features were predicted by computer simulation of 1H and 13C NMR spectra to complement the experimental NMR data. As a result, specific regions in the HSQC spectrum were attributed to different Alk-O-Alk moieties of Alk-O-Alk/ß-O-4 and Alk-O-Alk/ß-ß' structures. However, the differences between the specific regions were rather subtle; they were not well separated from each other and some major lignin moieties. Furthermore, SMWL contained a large variety of Alk-O-Alk moieties but in minute individual amounts, resulting in rather broad, superimposing resonances. Thus, evaluation did not allow assigning individual types of Alk-O-Alk moieties from the HSQC spectra; instead, they were quantified as total (α- and γ-linked) Alk-O-Alk based on the balance of structural units in the 13C NMR spectra. At last, potential formation mechanisms of various Alk-O-Alk ether structures in lignin biosynthesis, lignin aging, and during ball milling of wood were hypothesized and discussed.


Asunto(s)
Éter , Lignina , Lignina/química , Madera/química , Simulación por Computador , Estructura Molecular , Éteres , Éteres de Etila/análisis , Proteínas Tirosina Quinasas Receptoras
12.
Biomacromolecules ; 24(1): 166-177, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36542819

RESUMEN

The reductive amination of dialdehyde cellulose (DAC) with 2-picoline borane was investigated for its applicability in the generation of bioderived thermoplastics. Five primary amines, both aliphatic and aromatic, were introduced to the cellulose backbone. The influences of the side chains on the course of the reaction were examined by various analytical techniques with microcrystalline cellulose as a model compound. The obtained insights were transferred to a 39%-oxidized softwood kraft pulp to study the thermal properties of thereby generated high-molecular-weight thermoplastics. The number-average molecular weights (Mn) of the diamine celluloses, ranging from 60 to 82 kD, were investigated by gel permeation chromatography. The diamine celluloses exhibited glass transition temperatures (Tg) from 71 to 112 °C and were stable at high temperatures. Diamine cellulose generated from aniline and DAC showed the highest conversion, the highest Tg (112 °C), and a narrow molecular weight distribution (D̵ of 1.30).


Asunto(s)
Aminas , Celulosa , Aminación , Aminas/química , Celulosa/química , Diaminas
14.
Nat Chem ; 14(9): 976-984, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35739426

RESUMEN

The development of sustainable plastics from abundant renewable feedstocks has been limited by the complexity and efficiency of their production, as well as their lack of competitive material properties. Here we demonstrate the direct transformation of the hemicellulosic fraction of non-edible biomass into a tricyclic diester plastic precursor at 83% yield (95% from commercial xylose) during integrated plant fractionation with glyoxylic acid. Melt polycondensation of the resulting diester with a range of aliphatic diols led to amorphous polyesters (Mn = 30-60 kDa) with high glass transition temperatures (72-100 °C), tough mechanical properties (ultimate tensile strengths of 63-77 MPa, tensile moduli of 2,000-2,500 MPa and elongations at break of 50-80%) and strong gas barriers (oxygen transmission rates (100 µm) of 11-24 cc m-2 day-1 bar-1 and water vapour transmission rates (100 µm) of 25-36 g m-2 day-1) that could be processed by injection moulding, thermoforming, twin-screw extrusion and three-dimensional printing. Although standardized biodegradation studies still need to be performed, the inherently degradable nature of these materials facilitated their chemical recycling via methanolysis at 64 °C, and eventual depolymerization in room-temperature water.


Asunto(s)
Poliésteres , Azúcares , Lignina , Plásticos
15.
Carbohydr Polym ; 287: 119323, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35422289

RESUMEN

Gaseous acetic acid is formed under conditions of storage of historic paper objects. Its presence not only promotes hydrolytic cleavage of cellulose, but also causes acetylation of the cellulosic material to very small degree. The acetylation reaction proceeds under ambient conditions and without catalyst. Different analytical methods were used to prove the presence of organic acetates on cellulosic paper matrices. DESI-MS in combination with 2H-isotopic labeling showed the presence of sugar fragments with different acetylation patterns. A method based on Zemplen saponification was applied and worked also in the presence of a large excess of acetic acid and/or inorganic acetates. The acetylation effect was quantified for model papers and original, naturally aged paper samples. While cellulose acetylation was clearly proven to be another general pathway of paper aging, further studies of this acetylation phenomenon are needed with regard to conservational aspects and suitable paper storage conditions.


Asunto(s)
Acetatos , Celulosa , Acetilación , Libros
16.
Nanomaterials (Basel) ; 12(6)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35335708

RESUMEN

Nanoporous silica gels feature extremely large specific surface areas and high porosities and are ideal candidates for adsorption-related processes, although they are commonly rather fragile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare mechanically robust CNF-reinforced silica nanocomposites via the incorporation of methylcellulose and starch. Significantly, the addition of starch was very promising and substantially increased the compressive strength while preserving the specific surface area of the gels. Moreover, different silanes were added to the sol/gel process to introduce in situ functionality to the CNF/silica hydrogels. Thereby, CNF/silica hydrogels bearing carboxyl groups and thiol groups were produced and tested as adsorber materials for heavy metals and dyes. The developed solvent-free sol/gel process yielded shapable 3D CNF/silica hydrogels with high mechanical strength; moreover, the introduction of chemical functionalities further widens the application scope of such materials.

17.
Small ; 18(13): e2105420, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119202

RESUMEN

The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In-depth analysis of fire-damaged papers, by means of examples from the catastrophic fire in a 17th-century German library, shows the changes, which proceeded from the margin to the center, to go beyond surface charring and formation of hydrophobic carbon-rich layers. The charred paper exhibits structural changes in the nano- and micro-range, with increased porosity and water sorption. In less charred areas, cellulose is affected by both chain cleavage and cross-linking. Based on these results and conclusions with regard to adhesion of auxiliaries, a stabilization method is developed, which coats the damaged paper with a thin layer of cellulose nanofibers. It enables the reliable preservation of the paper and-most importantly-retrieval of the contained historical information: the nanofibers form a flexible, transparent film on the surface and adhere strongly to the damaged matrix, greatly reducing its fragility, giving it stability, and enabling digitization and further handling.


Asunto(s)
Celulosa , Nanofibras , Celulosa/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras/química , Porosidad , Agua
18.
Biomacromolecules ; 23(3): 1413-1422, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35212532

RESUMEN

In technical lignins, functionality is strongly related to molar mass. Hence, any technical lignin exhibits concurrent functionality-type distribution (FTD) along its molar mass distribution (MMD). This study combined preparative size-exclusion chromatography with offline characterizations to acquire highly resolved profiles of the functional heterogeneity of technical lignins, which represent crucial information for their material use. The shape of these profiles showed considerable dissimilarity between different technical lignins and followed sigmoid trends. Determining the dispersity in functionality (DF) of lignins via their FTD revealed a rather homogeneous distribution of their functionalities (DF of 1.00-1.21). The high resolution of the acquired profiles of functional heterogeneity facilitated the development of a robust calculation method for the estimation of functional group contents of lignin fractions based simply on their MMD, an invaluable tool to simulate the effects of intended purification processes. Moreover, a more thorough evaluation of separations based on functionality becomes accessible.


Asunto(s)
Demencia Frontotemporal , Lignina , Cromatografía en Gel , Humanos , Lignina/química , Peso Molecular
19.
Carbohydr Polym ; 278: 118887, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973725

RESUMEN

The properties of dialdehyde celluloses, which are usually generated by periodate oxidation, are highly dependent on the aldehyde content, i.e. the degree of oxidation (DO). Thus far, the established methods for determining the DO in dialdehyde celluloses lack simplicity or sufficient speed. More than 60 dialdehyde cellulose samples with varying aldehyde content were analysed by near-infrared and Fourier-transform infrared spectroscopy. This was found to be a reliable method for quickly predicting the DO if combined with partial least squares regression (PLSR). The proposed PLSR models can predict the DO with a high determination coefficient (R2) of 99% when applied to a single pulp type and 94% when applied to multiple types. This new approach quickly and reliably determines the DO of dialdehyde celluloses. It can be easily implemented in everyday research to save money, time and resources, especially because the raw datasets and measured DO values are provided.


Asunto(s)
Celulosa/análogos & derivados , Calibración , Conformación de Carbohidratos , Celulosa/química , Oxidación-Reducción , Espectrofotometría Infrarroja
20.
Data Brief ; 40: 107757, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35005146

RESUMEN

This dataset is related to the research article entitled ``A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy''. In this article, 74 dialdehyde cellulose samples with different degrees of oxidation were prepared by periodate oxidation and analysed by Fourier-transform infrared (FTIR) and near-infrared spectroscopy (NIR). The corresponding degrees of oxidation were determined indirectly by periodate consumption using UV spectroscopy at 222 nm and by the quantitative reaction with hydroxylamine hydrochloride followed by potentiometric titration. Partial least squares regression (PLSR) was used to correlate the infrared data with the corresponding degree of oxidation (DO). The developed NIR/PLSR and FTIR/PLSR models can easily be implemented in other laboratories to quickly and reliably predict the degree of oxidation of dialdehyde celluloses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...