Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1563, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238383

RESUMEN

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially by increasing FGF21 expression. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis under physiological stress by generating mice selectively lacking either Atf4 (ATF4 BKO) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum-fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue. Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum-fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis under fed conditions likely in a FGF21-independent manner, in part via increased amino acid uptake and metabolism.


Asunto(s)
Factor de Transcripción Activador 4 , Factores de Crecimiento de Fibroblastos , Termogénesis , Animales , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Aminoácidos/metabolismo , Frío , Ratones Endogámicos C57BL , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Mol Metab ; 72: 101718, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37030441

RESUMEN

OBJECTIVE: Glucagon-like peptide-1 receptor (GLP-1R) agonists (GLP-1RA) and fibroblast growth factor-21 (FGF21) confer similar metabolic benefits. GLP-1RA induce FGF21, leading us to investigate mechanisms engaged by the GLP-1RA liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. METHODS: Circulating FGF21 levels were measured in fasted male C57BL/6J, neuronal GLP-1R knockout, ß-cell GLP-1R knockout, and liver peroxisome proliferator-activated receptor alpha knockout mice treated acutely with liraglutide. To test the metabolic relevance of liver FGF21 in response to liraglutide, chow-fed control and liver Fgf21 knockout (LivFgf21-/-) mice were treated with vehicle or liraglutide in metabolic chambers. Body weight and composition, food intake, and energy expenditure were measured. Since FGF21 reduces carbohydrate intake, we measured body weight in mice fed matched diets with low- (LC) or high-carbohydrate (HC) content and in mice fed a high-fat, high-sugar (HFHS) diet. This was done in control and LivFgf21-/- mice and in mice lacking neuronal ß-klotho (Klb) expression to disrupt brain FGF21 signaling. RESULTS: Liraglutide increases FGF21 levels independently of decreased food intake via neuronal GLP-1R activation. Lack of liver Fgf21 expression confers resistance to liraglutide-induced weight loss due to attenuated reduction of food intake in chow-fed mice. Liraglutide-induced weight loss was impaired in LivFgf21-/- mice when fed HC and HFHS diets but not when fed a LC diet. Loss of neuronal Klb also attenuated liraglutide-induced weight loss in mice fed HC or HFHS diets. CONCLUSIONS: Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in a dietary carbohydrate-dependent manner.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Liraglutida , Animales , Masculino , Ratones , Carbohidratos , Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Liraglutida/farmacología , Ratones Endogámicos C57BL , Pérdida de Peso
3.
bioRxiv ; 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36945390

RESUMEN

In brown adipose tissue (BAT), short-term cold exposure induces the activating transcription factor 4 (ATF4), and its downstream target fibroblast growth factor 21 (FGF21). Induction of ATF4 in BAT in response to mitochondrial stress is required for thermoregulation, partially via upregulation of FGF21. In the present study, we tested the hypothesis that Atf4 and Fgf21 induction in BAT are both required for BAT thermogenesis by generating mice selectively lacking either Atf4 ( ATF4 BKO ) or Fgf21 (FGF21 BKO) in UCP1-expressing adipocytes. After 3 days of cold exposure, core body temperature was significantly reduced in ad-libitum -fed ATF4 BKO mice, which correlated with Fgf21 downregulation in brown and beige adipocytes, and impaired browning of white adipose tissue (WAT). Conversely, despite having reduced browning, FGF21 BKO mice had preserved core body temperature after cold exposure. Mechanistically, ATF4, but not FGF21, regulates amino acid import and metabolism in response to cold, likely contributing to BAT thermogenic capacity under ad libitum -fed conditions. Importantly, under fasting conditions, both ATF4 and FGF21 were required for thermogenesis in cold-exposed mice. Thus, ATF4 regulates BAT thermogenesis by activating amino acid metabolism in BAT in a FGF21-independent manner.

4.
bioRxiv ; 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36711605

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) agonists and fibroblast growth factor 21 (FGF21) confer similar metabolic benefits. Studies report that GLP-1RA induce FGF21. Here, we investigated the mechanisms engaged by the GLP-1R agonist liraglutide to increase FGF21 levels and the metabolic relevance of liraglutide-induced FGF21. We show that liraglutide increases FGF21 levels via neuronal GLP-1R activation. We also demonstrate that lack of liver Fgf21 expression confers partial resistance to liraglutide-induced weight loss. Since FGF21 reduces carbohydrate intake, we tested whether the contribution of FGF21 to liraglutide-induced weight loss is dependent on dietary carbohydrate content. In control and liver Fgf21 knockout (Liv Fgf21 -/- ) mice fed calorically matched diets with low- (LC) or high-carbohydrate (HC) content, we found that only HC-fed Liv Fgf21 -/- mice were resistant to liraglutide-induced weight loss. Similarly, liraglutide-induced weight loss was partially impaired in Liv Fgf21 -/- mice fed a high-fat, high-sugar (HFHS) diet. Lastly, we show that loss of neuronal ß-klotho expression also diminishes liraglutide-induced weight loss in mice fed a HC or HFHS diet, indicating that FGF21 mediates liraglutide-induced weight loss via neuronal FGF21 action. Our findings support a novel role for a GLP-1R-FGF21 axis in regulating body weight in the presence of high dietary carbohydrate content.

5.
6.
Diabetes ; 71(12): 2572-2583, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170659

RESUMEN

Mitochondria play a vital role in white adipose tissue (WAT) homeostasis including adipogenesis, fatty acid synthesis, and lipolysis. We recently reported that the mitochondrial fusion protein optic atrophy 1 (OPA1) is required for induction of fatty acid oxidation and thermogenic activation in brown adipocytes. In the current study we investigated the role of OPA1 in WAT function in vivo. We generated mice with constitutive or inducible knockout of OPA1 selectively in adipocytes. Studies were conducted under baseline conditions, at thermoneutrality, following high-fat feeding or during cold exposure. OPA1 deficiency reduced mitochondrial respiratory capacity in white adipocytes, impaired lipolytic signaling, repressed expression of de novo lipogenesis and triglyceride synthesis pathways, and promoted adipose tissue senescence and inflammation. Reduced WAT mass was associated with hepatic triglycerides accumulation and glucose intolerance. Moreover, mice deficient for OPA1 in adipocytes had impaired adaptive thermogenesis and reduced cold-induced browning of subcutaneous WAT and were completely resistant to diet-induced obesity. In conclusion, OPA1 expression and function in adipocytes are essential for adipose tissue expansion, lipid biosynthesis, and fatty acid mobilization of WAT and brown adipocytes and for thermogenic activation of brown and beige adipocytes.


Asunto(s)
Tejido Adiposo Blanco , Metabolismo de los Lípidos , Animales , Ratones , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , Termogénesis/genética , Triglicéridos/metabolismo , Frío
7.
Mol Metab ; 64: 101564, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944896

RESUMEN

OBJECTIVE: Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS: To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, ß-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS: Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS: These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Leptina , Receptores de Leptina , Animales , Peso Corporal , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Leptina/metabolismo , Leptina/farmacología , Neuronas/metabolismo , Obesidad/metabolismo , Receptores de Leptina/genética , Pérdida de Peso
8.
Cell Rep ; 40(8): 111239, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001982

RESUMEN

Fibroblast growth factor 21 (FGF21) is a liver-derived endocrine hormone that functions to regulate energy homeostasis and macronutrient intake. Recently, FGF21 was reported to be produced and secreted from hypothalamic tanycytes, to regulate peripheral lipid metabolism; however, rigorous investigation of FGF21 expression in the brain has yet to be accomplished. Using a mouse model that drives CRE recombinase in FGF21-expressing cells, we demonstrate that FGF21 is not expressed in the hypothalamus, but instead is produced from the retrosplenial cortex (RSC), an essential brain region for spatial learning and memory. Furthermore, we find that central FGF21 produced in the RSC enhances spatial memory but does not regulate energy homeostasis or sugar intake. Finally, our data demonstrate that administration of FGF21 prolongs the duration of long-term potentiation in the hippocampus and enhances activation of hippocampal neurons. Thus, endogenous and pharmacological FGF21 appear to function in the hippocampus to enhance spatial memory.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Hígado , Animales , Metabolismo Energético/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Homeostasis/fisiología , Hígado/metabolismo , Ratones , Ratones Noqueados
9.
Cells ; 11(9)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35563871

RESUMEN

The ability to maintain energy homeostasis is necessary for survival. Recently, an emerging role for ependymogial cells, which line the third ventricle in the hypothalamus in the regulation of energy homeostasis, has been appreciated. These cells are called tanycytes and are physically at the interface of brain communication with peripheral organs and have been proposed to mediate the transport of circulating hormones from the third ventricle into the parenchyma of the hypothalamus. Despite the important role tanycytes have been proposed to play in mediating communication from the periphery to the brain, we understand very little about the ontology and function of these cells due to their limited abundance and lack of ability to genetically target this cell population reliably. To overcome these hurdles, we integrated existing hypothalamic single cell RNA sequencing data, focusing on tanycytes, to allow for more in-depth characterization of tanycytic cell types and their putative functions. Overall, we expect this dataset to serve as a resource for the research community.


Asunto(s)
Células Ependimogliales , Transcriptoma , Animales , Células Ependimogliales/metabolismo , Homeostasis , Hipotálamo/metabolismo , Ratones , Transcriptoma/genética
10.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35108517

RESUMEN

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Estudio de Asociación del Genoma Completo , Consumo de Bebidas Alcohólicas , Animales , Sistema Endocrino/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo
11.
Mol Metab ; 55: 101405, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844020

RESUMEN

OBJECTIVE: Uncoupling protein 1 (UCP1) is a mitochondrial protein critical for adaptive thermogenesis in adipose tissues, and it is typically believed to be restricted to thermogenic adipose tissues. UCP1-Cre transgenic mice are utilized in numerous studies to provide "brown adipose-specific" conditional gene targeting. Here, we examined the distribution of Cre and UCP1 throughout the body in UCP1-Cre reporter mice. METHODS: UCP1-Cre mice crossed to Ai14-tdTomato and Ai9-tdTomato reporter mice were used to explore the tissue distribution of Cre recombinase and Ucp1 mRNA in various tissues. UCP1-Cre mice were independently infected with either a Cre-dependent PHP.eB-tdTomato virus or a Cre-dependent AAV-tdTomato virus to determine whether and where UCP1 is actively expressed in the adult central nervous system. In situ analysis of the deposited single cell RNA sequencing data was used to evaluate Ucp1 expression in the hypothalamus. RESULTS: As expected, Ucp1 expression was detected in both brown and inguinal adipose tissues. Ucp1 expression was also detected in the kidney, adrenal glands, thymus, and hypothalamus. Consistent with detectable Ucp1 expression, tdTomato expression was also observed in brown adipose tissue, inguinal white adipose tissue, kidney, adrenal glands, and hypothalamus of both male and female UCP1-Cre; Ai14-tdTomato and UCP1-Cre; Ai9-tdTomato mice by fluorescent imaging and qPCR. Critically, expression of tdTomato, and thus UCP1, within the central nervous system was observed in regions of the brain critical for the regulation of energy homeostasis, including the ventromedial hypothalamus (VMH). CONCLUSIONS: TdTomato expression in UCP1-Cre; tdTomato mice is not restricted to thermogenic adipose tissues. TdTomato was also expressed in the kidneys, adrenal glands, and throughout the brain, including brain regions and cell types that are critical for multiple aspects of central regulation of energy homeostasis. Collectively, these data have important implications for the utility of UCP1-Cre mice as genetic tools to investigate gene function specifically in brown adipose tissue.


Asunto(s)
Marcación de Gen/métodos , Termogénesis/fisiología , Proteína Desacopladora 1/genética , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Regulación de la Temperatura Corporal/genética , Regulación de la Temperatura Corporal/fisiología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Femenino , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Proteína Desacopladora 1/metabolismo
12.
Cell Rep ; 37(7): 110003, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788615

RESUMEN

Brown adipose tissue (BAT) thermogenic activity is tightly regulated by cellular redox status, but the underlying molecular mechanisms are incompletely understood. Protein S-nitrosylation, the nitric-oxide-mediated cysteine thiol protein modification, plays important roles in cellular redox regulation. Here we show that diet-induced obesity (DIO) and acute cold exposure elevate BAT protein S-nitrosylation, including UCP1. This thermogenic-induced nitric oxide bioactivity is regulated by S-nitrosoglutathione reductase (GSNOR; alcohol dehydrogenase 5 [ADH5]), a denitrosylase that balances the intracellular nitroso-redox status. Loss of ADH5 in BAT impairs cold-induced UCP1-dependent thermogenesis and worsens obesity-associated metabolic dysfunction. Mechanistically, we demonstrate that Adh5 expression is induced by the transcription factor heat shock factor 1 (HSF1), and administration of an HSF1 activator to BAT of DIO mice increases Adh5 expression and significantly improves UCP1-mediated respiration. Together, these data indicate that ADH5 controls BAT nitroso-redox homeostasis to regulate adipose thermogenesis, which may be therapeutically targeted to improve metabolic health.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Alcohol Deshidrogenasa/metabolismo , Óxido Nítrico/metabolismo , Alcohol Deshidrogenasa/fisiología , Animales , Dieta , Células HEK293 , Homeostasis/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Óxido Nítrico/química , Obesidad/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Termogénesis/fisiología , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/fisiología
13.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33944779

RESUMEN

Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, which is activated independently of BAT thermogenic function.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Regulación de la Temperatura Corporal/genética , Factores de Crecimiento de Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , Eliminación de Gen , Adipocitos Marrones/fisiología , Tejido Adiposo Blanco/fisiología , Animales , Femenino , Factores de Crecimiento de Fibroblastos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética
14.
Cell Rep ; 35(7): 109128, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010646

RESUMEN

Organismal stressors such as cold exposure require a systemic response to maintain body temperature. Brown adipose tissue (BAT) is a key thermogenic tissue in mammals that protects against hypothermia in response to cold exposure. Defining the complex interplay of multiple organ systems in this response is fundamental to our understanding of adipose tissue thermogenesis. In this study, we identify a role for hepatic insulin signaling via AKT in the adaptive response to cold stress and show that liver AKT is an essential cell-nonautonomous regulator of adipocyte lipolysis and BAT function. Mechanistically, inhibition of forkhead box O1 (FOXO1) by AKT controls BAT thermogenesis by enhancing catecholamine-induced lipolysis in the white adipose tissue (WAT) and increasing circulating fibroblast growth factor 21 (FGF21). Our data identify a role for hepatic insulin signaling via the AKT-FOXO1 axis in regulating WAT lipolysis, promoting BAT thermogenic capacity, and ensuring a proper thermogenic response to acute cold exposure.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hígado/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Termogénesis/genética , Animales , Ratones
15.
J Clin Invest ; 131(10)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33822771

RESUMEN

The protein kinases IKKε and TBK1 are activated in liver and fat in mouse models of obesity. We have previously demonstrated that treatment with the IKKε/TBK1 inhibitor amlexanox produces weight loss and relieves insulin resistance in obese animals and patients. While amlexanox treatment caused a transient reduction in food intake, long-term weight loss was attributable to increased energy expenditure via FGF21-dependent beiging of white adipose tissue (WAT). Amlexanox increased FGF21 synthesis and secretion in several tissues. Interestingly, although hepatic secretion determined circulating levels, it was dispensable for regulating energy expenditure. In contrast, adipocyte-secreted FGF21 may have acted as an autocrine factor that led to adipose tissue browning and weight loss in obese mice. Moreover, increased energy expenditure was an important determinant of improved insulin sensitivity by amlexanox. Conversely, the immediate reductions in fasting blood glucose observed with acute amlexanox treatment were mediated by the suppression of hepatic glucose production via activation of STAT3 by adipocyte-secreted IL-6. These findings demonstrate that amlexanox improved metabolic health via FGF21 action in adipocytes to increase energy expenditure via WAT beiging and that adipocyte-derived IL-6 has an endocrine role in decreasing gluconeogenesis via hepatic STAT3 activation, thereby producing a coordinated improvement in metabolic parameters.


Asunto(s)
Aminopiridinas/farmacología , Glucemia/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Gluconeogénesis/efectos de los fármacos , Quinasa I-kappa B/metabolismo , Hígado/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Glucemia/genética , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Factores de Crecimiento de Fibroblastos/genética , Gluconeogénesis/genética , Quinasa I-kappa B/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
17.
Blood ; 137(12): 1658-1668, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33027814

RESUMEN

Very little is known about the role of metabolic regulatory mechanisms in platelet activation and thrombosis. Dimeric pyruvate kinase M2 (PKM2) is a crucial regulator of aerobic glycolysis that facilitates the production of lactate and metabolic reprogramming. Herein, we report that limiting PKM2 dimer formation, using the small molecule inhibitor ML265, negatively regulates lactate production and glucose uptake in human and murine stimulated platelets. Furthermore, limiting PKM2 dimer formation reduced agonist-induced platelet activation, aggregation, clot retraction, and thrombus formation under arterial shear stress in vitro in both human and murine platelets. Mechanistically, limiting PKM2 dimerization downregulated phosphatidylinositol 3-kinase (PI3K)-mediated protein kinase B or serine/threonine-specific protein kinase (Akt)/glycogen synthase kinase 3 (GSK3) signaling in human and murine platelets. To provide further evidence for the role of PKM2 in platelet function, we generated a megakaryocyte or platelet-specific PKM2-/- mutant strain (PKM2fl/flPF4Cre+). Platelet-specific PKM2-deficient mice exhibited impaired agonist-induced platelet activation, aggregation, clot retraction, and PI3K-mediated Akt/GSK3 signaling and were less susceptible to arterial thrombosis in FeCl3 injury-induced carotid- and laser injury-induced mesenteric artery thrombosis models, without altering hemostasis. Wild-type mice treated with ML265 were less susceptible to arterial thrombosis with unaltered tail bleeding times. These findings reveal a major role for PKM2 in coordinating multiple aspects of platelet function, from metabolism to cellular signaling to thrombosis, and implicate PKM2 as a potential target for antithrombotic therapeutic intervention.


Asunto(s)
Activación Plaquetaria , Piruvato Quinasa/metabolismo , Trombosis/metabolismo , Animales , Plaquetas/metabolismo , Femenino , Glucosa/metabolismo , Glucólisis , Humanos , Masculino , Ratones Endogámicos C57BL
19.
Mol Metab ; 44: 101138, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33285302

RESUMEN

BACKGROUND: The liver is a key regulator of systemic energy homeostasis and can sense and respond to nutrient excess and deficiency through crosstalk with multiple tissues. Regulation of systemic energy homeostasis by the liver is mediated in part through regulation of glucose and lipid metabolism. Dysregulation of either process may result in metabolic dysfunction and contribute to the development of insulin resistance or fatty liver disease. SCOPE OF REVIEW: The liver has recently been recognized as an endocrine organ that secretes hepatokines, which are liver-derived factors that can signal to and communicate with distant tissues. Dysregulation of liver-centered inter-organ pathways may contribute to improper regulation of energy homeostasis and ultimately metabolic dysfunction. Deciphering the mechanisms that regulate hepatokine expression and communication with distant tissues is essential for understanding inter-organ communication and for the development of therapeutic strategies to treat metabolic dysfunction. MAJOR CONCLUSIONS: In this review, we discuss liver-centric regulation of energy homeostasis through hepatokine secretion. We highlight key hepatokines and their roles in metabolic control, examine the molecular mechanisms of each hepatokine, and discuss their potential as therapeutic targets for metabolic disease. We also discuss important areas of future studies that may contribute to understanding hepatokine signaling under healthy and pathophysiological conditions.


Asunto(s)
Citocinas/metabolismo , Homeostasis , Hígado/metabolismo , Animales , Diabetes Mellitus Tipo 2/metabolismo , Hígado Graso/metabolismo , Glucosa/metabolismo , Humanos , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos , Enfermedades Metabólicas/metabolismo , Nutrientes/metabolismo , Obesidad/metabolismo
20.
Sci Rep ; 10(1): 19521, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33177640

RESUMEN

Alterations in macronutrient intake can have profound effects on energy intake and whole-body metabolism. For example, reducing protein intake increases energy expenditure, increases insulin sensitivity and decreases body weight in rodents. Fibroblast growth factor 21 (FGF21) signaling in the brain is necessary for the metabolic effects of dietary protein restriction and has more recently been proposed to promote protein preference. However, the neuron populations through which FGF21 elicits these effects are unknown. Here, we demonstrate that deletion of ß-klotho in glutamatergic, but not GABAergic, neurons abrogated the effects of dietary protein restriction on reducing body weight, but not on improving insulin sensitivity in both diet-induced obese and lean mice. Specifically, FGF21 signaling in glutamatergic neurons is necessary for protection against body weight gain and induction of UCP1 in adipose tissues associated with dietary protein restriction. However, ß-klotho expression in glutamatergic neurons was dispensable for the effects of dietary protein restriction to increase insulin sensitivity. In addition, we report that FGF21 administration does not alter protein preference, but instead promotes the foraging of other macronutrients primarily by suppressing simple sugar consumption. This work provides important new insights into the neural substrates and mechanisms behind the endocrine control of metabolism during dietary protein dilution.


Asunto(s)
Proteínas en la Dieta/farmacología , Factores de Crecimiento de Fibroblastos/metabolismo , Neuronas/metabolismo , Pérdida de Peso/fisiología , Animales , Dieta con Restricción de Proteínas , Dieta Reductora , Proteínas en la Dieta/química , Neuronas GABAérgicas/metabolismo , Resistencia a la Insulina , Proteínas Klotho , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Obesidad/dietoterapia , Obesidad/metabolismo , Transducción de Señal , Sacarosa/farmacología , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...