Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Sci Total Environ ; 929: 172239, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583620

RESUMEN

There are substantial concerns about impaired honey bee health and colony losses due to several poorly understood factors. We used MALDI profiling (MALDI BeeTyping®) analysis to investigate how some environmental and management factors under field conditions across Europe affected the honey bee haemolymph peptidome (all peptides in the circulatory fluid), as a profile of molecular markers representing the immune status of Apis mellifera. Honey bees were exposed to a range of environmental stressors in 128 agricultural sites across eight European countries in four biogeographic zones, with each country contributing eight sites each for two different cropping systems: oilseed rape (OSR) and apple (APP). The full haemolymph peptide profiles, including the presence and levels of three key immunity markers, namely the antimicrobial peptides (AMPs) Apidaecin, Abaecin and Defensin-1, allowed the honey bee responses to environmental variables to be discriminated by country, crop type and site. When considering just the AMPs, it was not possible to distinguish between countries by the prevalence of each AMP in the samples. However, it was possible to discriminate between countries on the amounts of the AMPs, with the Swedish samples in particular expressing high amounts of all AMPs. A machine learning model was developed to discriminate the haemolymphs of bees from APP and OSR sites. The model was 90.6 % accurate in identifying the crop type from the samples used to build the model. Overall, MALDI BeeTyping® of bee haemolymph represents a promising and cost-effective "blood test" for simultaneously monitoring dozens of peptide markers affected by environmental stressors at the landscape scale, thus providing policymakers with new diagnostic and regulatory tools for monitoring bee health.


Asunto(s)
Agricultura , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Abejas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Europa (Continente) , Pruebas Hematológicas , Hemolinfa , Monitoreo del Ambiente/métodos
2.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569959

RESUMEN

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Asunto(s)
Productos Agrícolas , Monitoreo del Ambiente , Plaguicidas , Polinización , Animales , Abejas/fisiología , Plaguicidas/análisis , Polen , Malus , Exposición a Riesgos Ambientales/estadística & datos numéricos
3.
Sci Rep ; 14(1): 3524, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347035

RESUMEN

Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.


Asunto(s)
Bacterias , Polinización , Abejas , Animales , Europa (Continente)
4.
Ecol Lett ; 27(1): e14362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38253060

RESUMEN

Insects are key components of food chains, and monitoring data provides new opportunities to identify trophic relationships at broad spatial and temporal scales. Here, combining two monitoring datasets from Great Britain, we reveal how the population dynamics of the blue tit Cyanistes caeruleus are influenced by the abundance of moths - a core component of their breeding diet. We find that years with increased population growth for blue tits correlate strongly with high moth abundance, but population growth in moths and birds is less well correlated; suggesting moth abundance directly affects bird population change. Next, we identify moths that are important components of blue tit diet, recovering associations to species previously identified as key food sources such as the winter moth Operoptera brumata. Our work provides new evidence that insect abundance impacts bird population dynamics in natural communities and provides insight into spatial diet turnover at a national-scale.


Asunto(s)
Mariposas Nocturnas , Pájaros Cantores , Animales , Insectos , Cadena Alimentaria , Estaciones del Año
5.
Nature ; 628(8007): 355-358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38030722

RESUMEN

Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.


Asunto(s)
Insecticidas , Plaguicidas , Abejas , Animales , Plaguicidas/toxicidad , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Agricultura , Polen
6.
Pest Manag Sci ; 80(5): 2383-2392, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37899495

RESUMEN

BACKGROUND: Current European Union and United Kingdom legislation prohibits the use of neonicotinoid insecticidal seed treatments in oilseed rape (OSR, Brassica napus). This ban, and the reduction in efficacy of pyrethroid insecticide sprays due to resistance, has exacerbated pest pressure from the cabbage stem flea beetle (Psylliodes chrysocephala) in winter OSR. We quantified the direct impact of P. chrysocephala injury on the productivity of OSR. Leaf area was removed from young plants to simulate differing intensities of adult feeding injury alone or in combination with varying larval infestation levels. RESULTS: OSR can compensate for up to 90% leaf area loss at early growth stages, with no meaningful effect on yield. Significant impacts were observed with high infestations of more than five larvae per plant; plants were shorter, produced fewer flowers and pods, with fewer seeds per pod which had lower oil content and higher glucosinolate content. Such effects were not recorded when five larvae or fewer were present. CONCLUSION: These data confirm the yield-limiting potential of the larval stages of P. chrysocephala but suggest that the current action thresholds which trigger insecticide application for both adult and larval stages (25% leaf area loss and five larvae/plant, respectively) are potentially too low as they are below the physiological injury level where plants can fully compensate for damage. Further research in field conditions is needed to define physiological thresholds more accurately as disparity may result in insecticide applications that are unnecessary to protect yield and may in turn exacerbate the development and spread of insecticide resistance in P. chrysocephala. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Brassica napus , Escarabajos , Insecticidas , Piretrinas , Animales , Insecticidas/farmacología , Piretrinas/farmacología , Resistencia a los Insecticidas , Larva
7.
Ecol Evol ; 13(11): e10705, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020698

RESUMEN

Climate plays a major role in determining where species occur, and when they are active throughout the year. In the face of a changing climate, many species are shifting their ranges poleward. Many species are also shifting their emergence phenology. Wild bees in Great Britain are susceptible to changes in climatic conditions but little is known about historic or potential future spatio-temporal trends of many species. This study utilized a sliding window approach to assess the impacts of climate on bee emergence dates, estimating the best temperature window for predicting emergence dates for 88 species of wild bees. Using a 'middle-of-the-road' (RCP 4.5) and 'worst-case' (RCP 8.5) climate scenario for the period 2070-2079, predictions of future emergence dates were made. In general, the best predicting climate window occurred in the 0-3 months preceding emergence. Across the 40 species that showed a shift in emergence dates in response to a climate window, the mean advance was 13.4 days under RCP 4.5 and 24.9 days under RCP 8.5. Species distribution models (SDMs) were used to predict suitable climate envelopes under historic (1980-1989), current (2010-2019) and future (2070-2079 under RCP 4.5 and RCP 8.5 scenarios) climate conditions. These models predict that the climate envelope for 92% of studied species has increased since the 1980s, and for 97% and 93% of species under RCP 4.5 and RCP 8.5 respectively, this is predicted to continue, due to extension of the northern range boundary. While any range changes will be moderated by habitat availability, it highlights that Great Britain will likely experience northward shifts of bee populations in the future. By combining spatial and temporal trends, this work provides an important step towards informing conservation measures suitable for future climates, directing how interventions can be provided in the right place at the right time.

8.
Sci Rep ; 13(1): 18099, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872212

RESUMEN

Managed bee species provide essential pollination services that contribute to food security worldwide. However, managed bees face a diverse array of threats and anticipating these, and potential opportunities to reduce risks, is essential for the sustainable management of pollination services. We conducted a horizon scanning exercise with 20 experts from across Europe to identify emerging threats and opportunities for managed bees in European agricultural systems. An initial 63 issues were identified, and this was shortlisted to 21 issues through the horizon scanning process. These ranged from local landscape-level management to geopolitical issues on a continental and global scale across seven broad themes-Pesticides & pollutants, Technology, Management practices, Predators & parasites, Environmental stressors, Crop modification, and Political & trade influences. While we conducted this horizon scan within a European context, the opportunities and threats identified will likely be relevant to other regions. A renewed research and policy focus, especially on the highest-ranking issues, is required to maximise the value of these opportunities and mitigate threats to maintain sustainable and healthy managed bee pollinators within agricultural systems.


Asunto(s)
Productos Agrícolas , Plaguicidas , Abejas , Animales , Agricultura , Polinización , Tecnología
9.
Sci Rep ; 13(1): 16462, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777537

RESUMEN

Many pollinators, including bumble bees, are in decline. Such declines are known to be driven by a number of interacting factors. Decreases in bee populations may also negatively impact the key ecosystem service, pollination, that they provide. Pesticides and parasites are often cited as two of the drivers of bee declines, particularly as they have previously been found to interact with one another to the detriment of bee health. Here we test the effects of an insecticide, sulfoxaflor, and a highly prevalent bumble bee parasite, Crithidia bombi, on the bumble bee Bombus terrestris. After exposing colonies to realistic doses of either sulfoxaflor and/or Crithidia bombi in a fully crossed experiment, colonies were allowed to forage on field beans in outdoor exclusion cages. Foraging performance was monitored, and the impacts on fruit set were recorded. We found no effect of either stressor, or their interaction, on the pollination services they provide to field beans, either at an individual level or a whole colony level. Further, there was no impact of any treatment, in any metric, on colony development. Our results contrast with prior findings that similar insecticides (neonicotinoids) impact pollination services, and that sulfoxaflor impacts colony development, potentially suggesting that sulfoxaflor is a less harmful compound to bee health than neonicotinoids insecticides.


Asunto(s)
Insecticidas , Polinización , Abejas , Animales , Ecosistema , Crithidia , Insecticidas/toxicidad , Neonicotinoides/toxicidad
10.
Ecol Evol ; 13(7): e10284, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37431445

RESUMEN

Climate change has a diverse range of impacts on wild bees, including their phenology or timing of life history events. Climate-driven phenological shifts can not only impact individuals at species level but also threaten the vital pollination service that wild bees provide to both wild plants and cultivated crops. Despite their involvement in pollination, for most bee species, especially in Great Britain, little is known about phenological shifts. This study makes use of 40 years of presence-only data for 88 species of wild bees to analyse shifts in emergence dates, both over time and in relation to temperature. The analyses reveal widespread advances in emergence dates of British wild bees, at an average rate of 0.40 ± 0.02 days per year since 1980 across all species in the study data set. Temperature is a key driver of this shift, with an average advance of 6.5 ± 0.2 days per 1°C warming. For change in emergence dates both over time and in relation to temperature, there was significant species-specific variation, with 14 species showing significant advances over time and 67 showing significant advances in relation to temperature. Traits did not appear to explain variation in individual species' responses, with overwintering stage, lecty, emergence period and voltinism considered as possible explanatory traits. Pairwise comparisons showed no differences in sensitivity of emergence dates to increasing temperature between trait groups (groups of species which share all four traits) that differed by only one trait. These results highlight not only a direct impact of temperature on the phenology of wild bees themselves but also the species-specific shifts highlight a possible impact on the temporal structure of bee communities and the pollination networks for which the wild bees are so crucial.

11.
PLoS One ; 18(6): e0285478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37310957

RESUMEN

Many publications lack sufficient background information (e.g. location) to be interpreted, replicated, or reused for synthesis. This impedes scientific progress and the application of science to practice. Reporting guidelines (e.g. checklists) improve reporting standards. They have been widely taken up in the medical sciences, but not in ecological and agricultural research. Here, we use a community-centred approach to develop a reporting checklist (AgroEcoList 1.0) through surveys and workshops with 23 experts and the wider agroecological community. To put AgroEcoList in context, we also assessed the agroecological community's perception of reporting standards in agroecology. A total of 345 researchers, reviewers, and editors, responded to our survey. Although only 32% of respondents had prior knowledge of reporting guidelines, 76% of those that had said guidelines improved reporting standards. Overall, respondents agreed on the need of AgroEcolist 1.0; only 24% of respondents had used reporting guidelines before, but 78% indicated they would use AgroEcoList 1.0. We updated AgroecoList 1.0 based on respondents' feedback and user-testing. AgroecoList 1.0 consists of 42 variables in seven groups: experimental/sampling set-up, study site, soil, livestock management, crop and grassland management, outputs, and finances. It is presented here, and is also available on github (https://github.com/AgroecoList/Agroecolist). AgroEcoList 1.0 can serve as a guide for authors, reviewers, and editors to improve reporting standards in agricultural ecology. Our community-centred approach is a replicable method that could be adapted to develop reporting checklists in other fields. Reporting guidelines such as AgroEcoList can improve reporting standards and therefore the application of research to practice, and we recommend that they are adopted more widely in agriculture and ecology.


Asunto(s)
Agricultura , Lista de Verificación , Animales , Suelo , Conocimiento , Ganado
12.
Insects ; 14(6)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37367306

RESUMEN

Wild ground-nesting bees are key pollinators of apple (Malus domestica). We explored, (1) where they choose to nest, (2) what influences site selection and (3) species richness in orchards. Twenty-three orchards were studied over three years; twelve were treated with additional herbicide to increase bare ground with the remainder as untreated controls. Vegetation cover, soil type, soil compaction, nest number and location, and species were recorded. Fourteen species of ground-nesting solitary/eusocial bee were identified. Most nests were in areas free of vegetation and areas treated with additional herbicide were utilised by ground nesting bees within three years of application. Nests were also evenly distributed along the vegetation-free strips underneath the apple trees. This area was an important ground-nesting bee habitat with mean numbers of nests at peak nest activity of 873 per ha (range 44-5705), and 1153 per ha (range 0-4082) in 2018 and 2019, respectively. Increasing and maintaining areas of bare ground in apple orchards during peak nesting events could improve nesting opportunities for some species of ground-nesting bee and, combined with flowers strips, be part of a more sustainable pollinator management approach. The area under the tree row is an important contributor to the ground-nesting bee habitat and should be kept bare during peak nesting.

13.
Ecol Appl ; 33(1): e2743, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36107148

RESUMEN

There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers.


Asunto(s)
Malus , Polinización , Abejas , Animales , Ecosistema , Insectos , Frutas , Productos Agrícolas , Flores
14.
Sci Rep ; 12(1): 18866, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36344518

RESUMEN

Wild bees are declining, mainly due to the expansion of urban habitats that have led to land-use changes. Effects of urbanization on wild bee communities are still unclear, as shown by contrasting reports on their species and functional diversities in urban habitats. To address this current controversy, we built a large dataset, merging 16 surveys carried out in 3 countries of Western Europe during the past decades, and tested whether urbanization influences local wild bee taxonomic and functional community composition. These surveys encompassed a range of urbanization levels, that were quantified using two complementary metrics: the proportion of impervious surfaces and the human population density. Urban expansion, when measured as a proportion of impervious surfaces, but not as human population density, was significantly and negatively correlated with wild bee community species richness. Taxonomic dissimilarity of the bee community was independent of both urbanization metrics. However, occurrence rates of functional traits revealed significant differences between lightly and highly urbanized communities, for both urbanization metrics. With higher human population density, probabilities of occurrence of above-ground nesters, generalist and small species increased. With higher soil sealing, probabilities of occurrence of above-ground nesters, generalists and social bees increased as well. Overall, these results, based on a large European dataset, suggest that urbanization can have negative impacts on wild bee diversity. They further identify some traits favored in urban environments, showing that several wild bee species can thrive in cities.


Asunto(s)
Ecosistema , Urbanización , Humanos , Abejas , Animales , Ciudades , Densidad de Población , Europa (Continente) , Biodiversidad
15.
Biol Rev Camb Philos Soc ; 97(5): 1930-1947, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35808863

RESUMEN

Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human-induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land-use change. Conversely, the suppression of natural disturbances threatens disturbance-dependent biota. Using a meta-analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α-diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground-dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α-diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta-analysis by applying a unified diversity concept based on Hill numbers to estimate α-diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity-disturbance relationships are shaped by species relative abundances. Our synthesis of α-diversity was extended by a synthesis of disturbance-induced change in species assemblages, and revealed that disturbance changes the ß-diversity of multiple taxonomic groups, including some groups that were not affected at the α-diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α-diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes.


Asunto(s)
Biodiversidad , Bosques , Animales , Aves , Ecosistema , Humanos , Plantas , Árboles
16.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210172, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35491602

RESUMEN

Research into pollinators in managed landscapes has recently combined approaches of pollination ecology and landscape ecology, because key stressors are likely to interact across wide areas. While laboratory and field experiments are valuable for furthering understanding, studies are required to investigate the interacting drivers of pollinator health and diversity across a broader range of landscapes and a wider array of taxa. Here, we use a network of 96 study landscapes in six topographically diverse regions of Britain, to test the combined importance of honeybee density, insecticide loadings, floral resource availability and habitat diversity to pollinator communities. We also explore the interactions between these drivers and the cover and proximity of semi-natural habitat. We found that among our four drivers, only honeybee density was positively related to wild pollinator abundance and diversity, and the positive association between abundance and floral resources depended on insecticide loadings and habitat diversity. By contrast, our exploratory models including habitat composition metrics revealed a complex suite of interactive effects. These results demonstrate that improving pollinator community composition and health is unlikely to be achieved with general resource enhancements only. Rather, local land-use context should be considered in fine-tuning pollinator management and conservation. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Asunto(s)
Agricultura , Insecticidas , Animales , Abejas , Ecología , Ecosistema , Polinización
17.
Glob Chang Biol ; 28(12): 3883-3901, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35274416

RESUMEN

Tropical forests in India have declined at an alarming rate over the past century, with extensive literature focusing on the high contributions of agricultural expansions to deforestation, while the effects of climate change have largely been overlooked. Climate change effects, such as increasing temperatures, drought and flooding, have already occurred, and are projected to worsen. Climate velocity, a metric that accounts for spatial heterogeneity in climate, can help identify contiguous areas under greater climate stress and potential climate refuges in addition to traditional temporal trends. Here, we examined the relative contribution of climate changes to forest loss in India during the period 2001-2018, at two spatial (regional and national) and two temporal (seasonal and annual) scales. This includes, for the first time, a characterization of climate velocity in the country. Our findings show that annual forest loss increased substantially over the 17-year period examined (2001-2018), with the majority of forest loss occurring in the Northeast region. Decreases in temporal trends of temperature and precipitation were most associated with forest losses, but there was large spatial and seasonal variation in the relationship. In every region except the Northeast, forest losses were correlated with faster velocities of at least one climate variable but overlapping areas of high velocities were rare. Our findings indicate that climate changes have played an important role in India's past forest loss, but likely remain secondary to other factors at present. We stress concern for climates velocities recorded in the country, reaching 97 km year-1 , and highlight that understanding the different regional and seasonal relationships between climatic conditions and forest distributions will be key to effective protection of the country's remaining forests as climate change accelerates.


Asunto(s)
Cambio Climático , Bosques , Sequías , Estaciones del Año , Temperatura
18.
Pest Manag Sci ; 78(6): 2477-2491, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35315203

RESUMEN

BACKGROUND: Natural enemy pest control is becoming more desirable as restrictions increase on pesticide use. Carabid beetles are proven agents of natural-enemy pest control (NPC), controlling pests and weeds in crop areas. Agro-ecological measures can be effective for boosting carabid abundance and associated NPC, but the benefits of specific interventions to production are seldom communicated to farmers. We explore pathways to improved NPC by engaging farmers and increasing knowledge about farm management practices (FMPs) beneficial to carabids using engagement materials. We used a questionnaire to measure awareness, beliefs and attitudes to carabids and analysed these within a framework of the Theory of Planned Behaviour (TPB), relative to a control group. RESULTS: We found awareness of carabid predation to be associated with beliefs of pest and weed control efficacy. Within the framework of TPB, we found that current implementation of FMPs was higher if farmers perceived them to be both important for carabids and easy to implement. This was also true for future intention to implement, yet the perceived importance was influenced by engagement materials. Field margins/buffer strips and beetle banks (16% and 13% of responses) were the most favoured by farmers as interventions for carabids. CONCLUSION: The TPB is a valuable tool with which to examine internal elements of farmer behaviour. In this study self-selected participants were influenced by online engagement in a single intervention, proving this approach has the potential to change behaviour. Our results are evidence for the effectiveness of raising awareness of NPC to change attitudes and increase uptake of sustainable practices.


Asunto(s)
Escarabajos , Plaguicidas , Agricultura/métodos , Animales , Escarabajos/fisiología , Agricultores , Humanos , Intención , Control de Plagas , Encuestas y Cuestionarios
19.
Basic Appl Ecol ; 58: 2-14, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35115899

RESUMEN

Sown wildflower areas are increasingly recommended as an agri-environmental intervention measure, but evidence for their success is limited to particular insect groups or hampered by the challenges of establishing seed mixes and maintaining flower abundance over time. We conducted a replicated experiment to establish wildflower areas to support insect pollinators in apple orchards. Over three years, and across 23 commercial UK orchards with and without sown wildflowers, we conducted 828 transect surveys across various non-crop habitats. We found that the abundance of flower-visiting solitary bees, bumblebees, honeybees, and beetles was increased in sown wildflower areas, compared with existing non-crop habitats in control orchards, from the second year following floral establishment. Abundance of hoverflies and other non-syrphid flies was increased in wildflower areas from the first year. Beyond the effect of wildflower areas, solitary bee abundance was also positively related to levels of floral cover in other local habitats within orchards, but neither local nor wider landscape-scale context affected abundance of other studied insect taxa within study orchards. There was a change in plant community composition on the sown wildflower areas between years, and in patterns of flowering within and between years, showing a succession from unsown weedy species towards a dominance of sown species over time. We discuss how the successful establishment of sown wildflower areas and delivery of benefits for different insect taxa relies on appropriate and reactive management practices as a key component of any such agri-environment scheme.

20.
Conserv Biol ; 36(4): e13886, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35075685

RESUMEN

Pollinator declines have prompted efforts to assess how land-use change affects insect pollinators and pollination services in agricultural landscapes. Yet many tools to measure insect pollination services require substantial landscape-scale data and technical expertise. In expert workshops, 3 straightforward methods (desk-based method, field survey, and empirical manipulation with exclusion experiments) for rapid insect pollination assessment at site scale were developed to provide an adaptable framework that is accessible to nonspecialist with limited resources. These methods were designed for TESSA (Toolkit for Ecosystem Service Site-Based Assessment) and allow comparative assessment of pollination services at a site of conservation interest and in its most plausible alternative state (e.g., converted to agricultural land). We applied the methods at a nature reserve in the United Kingdom to estimate the value of insect pollination services provided by the reserve. The economic value of pollination services provided by the reserve ranged from US$6163 to US$11,546/year. The conversion of the reserve to arable land would provide no insect pollination services and a net annual benefit from insect-pollinated crop production of approximately $1542/year (US$24∙ha-1 ∙year-1 ). The methods had wide applicability and were readily adapted to different insect-pollinated crops: rape (Brassica napus) and beans (Vicia faba) crops. All methods were rapidly employed under a low budget. The relatively less robust methods that required fewer resources yielded higher estimates of annual insect pollination benefit.


Diversidad y Conservación de Gasterópodos Subterráneos de Agua Dulce en los Estados Unidos y en México Resumen Las declinaciones de los polinizadores han impulsado los esfuerzos por evaluar cómo el cambio del uso de suelo afecta a los insectos polinizadores y los servicios de polinización en los paisajes agrícolas. Aun así, muchas de las herramientas para medir los servicios de los insectos polinizadores requieren datos sustanciales a escala de paisaje y el conocimiento de expertos. Desarrollamos tres métodos sencillos (método de gabinete, censo de campo y manipulación empírica con experimentos de exclusión) durante algunos talleres de expertos para la evaluación rápida de la polinización por insectos a escala de sitio con el objetivo de proporcionar un marco de trabajo adaptable y accesible para quienes no son especialistas y cuentan con recursos limitados. Estos métodos fueron diseñados para TESSA (Toolkit for Ecosystem Service Site-Based Assessment, en inglés) y permiten la evaluación comparativa de los servicios de polinización en los sitios de interés para la conservación y su estado alternativo más plausible (p. ej.: convertido a suelo agrícola). Aplicamos los métodos en una reserva natural del Reino Unido para estimar el valor de los servicios de polinización por insectos que proporciona la reserva. El valor económico de los servicios de polinización que proporciona la reserva varió desde US$6,163 a US$11,546 al año-1 . La conversión de la reserva a suelo arable no proporcionaría servicios de polinización por insectos, pero sí un beneficio anual neto a partir de la producción de cultivos polinizados por insectos de aproximadamente $1,542 al año-1 (US$24 ha-1 año-1 ). Los métodos tuvieron una aplicabilidad generalizada y estaban ya adaptados a los diferentes cultivos polinizados por insectos: cultivos de colza (Brassica napus) y habas (Vicia faba). Todos los métodos pudieron usarse con bajo presupuesto. Los métodos relativamente menos robustos que requirieron menos recursos produjeron estimados más elevados del beneficio anual de la polinización por insectos.


Asunto(s)
Productos Agrícolas , Polinización , Animales , Abejas , Brassica napus , Conservación de los Recursos Naturales , Ecosistema , Insectos , Vicia faba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...