Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 197: 108091, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719080

RESUMEN

Cryptic diversity poses a great obstacle in our attempts to assess the current biodiversity crisis and may hamper conservation efforts. The gekkonid genus Mediodactylus, a well-known case of hidden species and genetic diversity, has been taxonomically reclassified several times during the last decade. Focusing on the Mediterranean populations, a recent study within the M. kotschyi species complex using classic mtDNA/nuDNA markers suggested the existence of five distinct species, some being endemic and some possibly threatened, yet their relationships have not been fully resolved. Here, we generated genome-wide SNPs (using ddRADseq) and applied molecular species delimitation approaches and population genomic analyses to further disentangle these relationships. Τhe most extensive nuclear dataset, so far, encompassing 2,360 loci and âˆ¼ 699,000 bp from across the genome of Mediodactylus gecko, enabled us to resolve previously obscure phylogenetic relationships among the five, recently elevated, Mediodactylus species and to support the hypothesis that the taxon includes several new, undescribed species. Population genomic analyses within each of the proposed species showed strong genetic structure and high levels of genetic differentiation among populations.

2.
Mol Ecol ; 33(1): e17190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37909668

RESUMEN

After the domestication of goats around 10,000 years before the present (BP), humans transported goats far beyond the range of their wild ancestor, the bezoar goat. This brought domestic goats into contact with many wild goat species such as ibex and markhor, enabling introgression between domestic and wild goats. To investigate this, while shedding light on the taxonomic status of wild and domestic goats, we analysed genome-wide SNP data of 613 specimens from 14 taxonomic units, including Capra hircus, C. pyrenaica, C. ibex (from Switzerland, Austria, Germany and Slovenia), C. aegagrus aegagrus, C. a. cretica, C. h. dorcas, C. caucasica caucasica, C. c. severtzovi, C. c. cylindricornis, C. falconeri, C. sibirica sibirica, C. s. alaiana and C. nubiana, as well as Oreamnos americanus (mountain goat) as an outgroup. To trace gene flow between domestic and wild goats, we integrated genotype data of local goat breeds from the Alps as well as from countries such as Spain, Greece, Türkiye, Egypt, Sudan, Iran, Russia (Caucasus and Altai) and Pakistan. Our phylogenetic analyses displayed a clear separation between bezoar-type and ibex-type clades with wild goats from the Greek islands of Crete and Youra clustered within domestic goats, confirming their feral origin. Our analyses also revealed gene flow between the lineages of Caucasian tur and domestic goats that most likely occurred before or during early domestication. Within the clade of domestic goats, analyses inferred gene flow between African and Iberian goats. The detected events of introgression were consistent with previous reports and offered interesting insights into the historical relationships among domestic and wild goats.


Asunto(s)
Bezoares , Animales , Humanos , Filogenia , Genotipo , Bezoares/genética , Cabras/genética , Genoma/genética
3.
Curr Biol ; 33(1): 41-57.e15, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36493775

RESUMEN

We present a spatiotemporal picture of human genetic diversity in Anatolia, Iran, Levant, South Caucasus, and the Aegean, a broad region that experienced the earliest Neolithic transition and the emergence of complex hierarchical societies. Combining 35 new ancient shotgun genomes with 382 ancient and 23 present-day published genomes, we found that genetic diversity within each region steadily increased through the Holocene. We further observed that the inferred sources of gene flow shifted in time. In the first half of the Holocene, Southwest Asian and the East Mediterranean populations homogenized among themselves. Starting with the Bronze Age, however, regional populations diverged from each other, most likely driven by gene flow from external sources, which we term "the expanding mobility model." Interestingly, this increase in inter-regional divergence can be captured by outgroup-f3-based genetic distances, but not by the commonly used FST statistic, due to the sensitivity of FST, but not outgroup-f3, to within-population diversity. Finally, we report a temporal trend of increasing male bias in admixture events through the Holocene.


Asunto(s)
Genoma Humano , Grupos Raciales , Humanos , Masculino , Historia Antigua , Irán , Flujo Génico , Migración Humana , Genética de Población
4.
Mol Phylogenet Evol ; 175: 107561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779768

RESUMEN

High-throughput sequencing has enabled the comprehensive genetic exploration of biological diversity, especially by using natural history collections to study hard-to-find, threatened or even extinct-in-the-wild taxa. Mollusk shells are under-exploited as a source for DNA-based approaches, despite their apparent advantages in the field of conservation genetics. More particularly, degraded DNA techniques combined with high-throughput sequencing have never been used to gain insights about the DNA preservation in land snail subfossil or historical shells. Here, we applied degraded DNA analysis on two historical shells of Levantina rechingeri, a stenoendemic Critically Endangered species that has never been found alive, in order to explore the patterns of DNA preservation on land snail shells originating from the eastern Mediterranean, as well as to infer its molecular phylogenetic placement. Our results showed that centuries to decades-old DNA from an empty shell collected in an Aegean island exhibits characteristic post-mortem damage patterns similar to those observed in ancient DNA from eastern Mediterranean terrestrial animals, setting a precedent for future museomics studies on taxa distributed in areas with similar climate. Finally, genome skimming of the empty shell allowed high coverage of multiple nuclear and mitochondrial loci, enabling the phylogenetic placement of the focal taxon, the re-evaluation of its taxonomic classification, and the revealing of a new Aegean land snail lineage, Aristena genus novum. This approach is a non-invasive way to sample DNA from threatened land snail species and suitable to study the evolutionary history of taxa with cryptic ecology, stenoendemics, or extinct-in-the-wild, as well as old museum specimens.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Caracoles , Animales , ADN/genética , Especies en Peligro de Extinción , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Análisis de Secuencia de ADN/métodos , Caracoles/genética
5.
Mol Phylogenet Evol ; 175: 107585, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35810970

RESUMEN

Understanding intra-island patterns of evolutionary divergence, including cases of cryptic diversity, is a crucial step towards deciphering speciation processes. Cyprus is an oceanic island isolated for at least 5.3 Mya from surrounding continental regions, while it remains unclear whether it was ever connected to the mainland, even during the Messinian Salinity Crisis. The terrestrial isopod species Armadillo officinalis, that is widespread across the Mediterranean, offers the opportunity to explore intra-island divergence patterns that might exhibit geographical structure related also to the region's known paleogeography. Genome-wide ddRADseq, as well as Sanger sequencing for four mitochondrial and three nuclear loci data were generated for this purpose. In total, 71 populations from Cyprus, neighbouring continental sites, i.e., Israel, Lebanon and Turkey, and other Mediterranean regions, i.e. Greece, Italy, and Tunisia, were included in the analysis. Phylogenetic reconstructions and population structure analyses support the existence of at least six genetically discrete groups across the study area. Five of these distinct genetic clades occur on Cyprus, four of which are endemic to the island and one is widely distributed along the circum-Mediterranean countries. The sixth clade is distributed in Israel. The closest evolutionary relationship of endemic Cypriot populations is with those from Israel, while the evolutionary clade that is present in countries all around the Mediterranean is very shallow. Cladochronological analyses date the origin of the species on the island at ∼6 Mya. Estimated f4 and D statistics as well as FST values indicate the genetic isolation between the populations sampled from Cyprus and surrounding continental areas, while there is evident gene flow among populations within the island. Species delimitation and population genetic metrics support the existence of three distinct taxonomic units across the study area, two of which occur on the island and correspond to the endemic clade and the widespread circum-Mediterranean one, respectively, while the third corresponds to Israel's clade. The islands' paleogeographic history and recent human activities seem to have shaped current patterns of genetic diversity in this group of species.


Asunto(s)
Isópodos , Animales , Evolución Biológica , ADN Mitocondrial/genética , Flujo Génico , Variación Genética , Genética de Población , Humanos , Isópodos/genética , Filogenia
6.
Commun Biol ; 5(1): 546, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681083

RESUMEN

The status of the Fernandina Island Galapagos giant tortoise (Chelonoidis phantasticus) has been a mystery, with the species known from a single specimen collected in 1906. The discovery in 2019 of a female tortoise living on the island provided the opportunity to determine if the species lives on. By sequencing the genomes of both individuals and comparing them to all living species of Galapagos giant tortoises, here we show that the two known Fernandina tortoises are from the same lineage and distinct from all others. The whole genome phylogeny groups the Fernandina individuals within a monophyletic group containing all species with a saddleback carapace morphology and one semi-saddleback species. This grouping of the saddleback species is contrary to mitochondrial DNA phylogenies, which place the saddleback species across several clades. These results imply the continued existence of lineage long considered extinct, with a current known population size of a single individual.


Asunto(s)
Tortugas , Animales , ADN Mitocondrial/genética , Femenino , Genoma , Humanos , Filogenia , Tortugas/genética
7.
Heredity (Edinb) ; 128(4): 261-270, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217806

RESUMEN

The Galapagos Archipelago is recognized as a natural laboratory for studying evolutionary processes. San Cristóbal was one of the first islands colonized by tortoises, which radiated from there across the archipelago to inhabit 10 islands. Here, we sequenced the mitochondrial control region from six historical giant tortoises from San Cristóbal (five long deceased individuals found in a cave and one found alive during an expedition in 1906) and discovered that the five from the cave are from a clade that is distinct among known Galapagos giant tortoises but closely related to the species from Española and Pinta Islands. The haplotype of the individual collected alive in 1906 is in the same clade as the haplotype in the contemporary population. To search for traces of a second lineage in the contemporary population on San Cristóbal, we closely examined the population by sequencing the mitochondrial control region for 129 individuals and genotyping 70 of these for both 21 microsatellite loci and >12,000 genome-wide single nucleotide polymorphisms [SNPs]. Only a single mitochondrial haplotype was found, with no evidence to suggest substructure based on the nuclear markers. Given the geographic and temporal proximity of the two deeply divergent mitochondrial lineages in the historical samples, they were likely sympatric, raising the possibility that the lineages coexisted. Without the museum samples, this important discovery of an additional lineage of Galapagos giant tortoise would not have been possible, underscoring the value of such collections and providing insights into the early evolution of this iconic radiation.


Asunto(s)
Tortugas , Animales , ADN Mitocondrial/genética , Ecuador , Genoma , Haplotipos , Humanos , Repeticiones de Microsatélite , Museos , Filogenia , Tortugas/genética
8.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718699

RESUMEN

The Mediterranean Basin has experienced extensive change in geology and climate over the past six million years. Yet, the relative importance of key geological events for the distribution and genetic structure of the Mediterranean fauna remains poorly understood. Here, we use population genomic and phylogenomic analyses to establish the evolutionary history and genetic structure of common wall lizards (Podarcis muralis). This species is particularly informative because, in contrast to other Mediterranean lizards, it is widespread across the Iberian, Italian, and Balkan Peninsulas, and in extra-Mediterranean regions. We found strong support for six major lineages within P. muralis, which were largely discordant with the phylogenetic relationship of mitochondrial DNA. The most recent common ancestor of extant P. muralis was likely distributed in the Italian Peninsula, and experienced an "Out-of-Italy" expansion following the Messinian salinity crisis (∼5 Mya), resulting in the differentiation into the extant lineages on the Iberian, Italian, and Balkan Peninsulas. Introgression analysis revealed that both inter- and intraspecific gene flows have been pervasive throughout the evolutionary history of P. muralis. For example, the Southern Italy lineage has a hybrid origin, formed through admixture between the Central Italy lineage and an ancient lineage that was the sister to all other P. muralis. More recent genetic differentiation is associated with the onset of the Quaternary glaciations, which influenced population dynamics and genetic diversity of contemporary lineages. These results demonstrate the pervasive role of Mediterranean geology and climate for the evolutionary history and population genetic structure of extant species.


Asunto(s)
Lagartos , Metagenómica , Animales , ADN Mitocondrial/genética , Variación Genética , Lagartos/genética , Filogenia , Filogeografía
9.
Mol Phylogenet Evol ; 159: 107121, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33609707

RESUMEN

Wall lizards of the genus Podarcis (Sauria, Lacertidae) are the predominant reptile group in southern Europe, including 24 recognized species. Mitochondrial DNA data have shown that, with the exception of P. muralis, the Podarcis species distributed in the Balkan peninsula form a species group that is further sub-divided into two subgroups: the one of "P. tauricus" consisting of P. tauricus, P. milensis, P. gaigeae, and P. melisellensis, and the other of "P. erhardii" comprising P. erhardii, P. levendis, P. cretensis, and P. peloponnesiacus. In an attempt to explore the Balkan Podarcis phylogenomic relationships, assess the levels of genetic structure and to re-evaluate the number of extant species, we employed phylogenomic and admixture approaches on ddRADseq (double digested Restriction site Associated DNA sequencing) genomic data. With this efficient Next Generation Sequencing approach, we were able to obtain a large number of genomic loci randomly distributed throughout the genome and use them to resolve the previously obscure phylogenetic relationships among the different Podarcis species distributed in the Balkans. The obtained phylogenomic relationships support the monophyly of both aforementioned subgroups and revealed several divergent lineages within each subgroup, stressing the need for taxonomic re-evaluation of Podarcis' species in Balkans. The phylogenomic trees and the species delimitation analyses confirmed all recently recognized species (P. levendis, P. cretensis, and P. ionicus) and showed the presence of at least two more species, one in P. erhardii and the other in P. peloponnesiacus.


Asunto(s)
Especiación Genética , Genética de Población , Lagartos/clasificación , Filogenia , Animales , Peninsula Balcánica , ADN Mitocondrial/genética , Genómica , Metagenómica , Análisis de Secuencia de ADN
10.
Sci Rep ; 10(1): 19252, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159124

RESUMEN

Molecular species identification plays a crucial role in archaeology and palaeontology, especially when diagnostic morphological characters are unavailable. Molecular markers have been used in forensic science to trace the geographic origin of wildlife products, such as ivory. So far, only a few studies have applied genetic methods to both identify the species and circumscribe the provenance of historic wildlife trade material. Here, by combining ancient DNA methods and genome skimming on a historical elephantid tooth found in southwestern Portugal, we aimed to identify its species, infer its placement in the elephantid phylogenetic tree, and triangulate its geographic origin. According to our results the specimen dates back to the eighteenth century CE and belongs to a female African forest elephant (non-hybrid Loxodonta cyclotis individual) geographically originated from west-west-central Africa, from areas where one of the four major mitochondrial clades of L. cyclotis is distributed. Historical evidence supports our inference, pointing out that the tooth should be considered as post-Medieval raw ivory trade material between West Africa and Portugal. Our study provides a comprehensive approach to study historical products and artefacts using archaeogenetics and contributes towards enlightening cultural and biological historical aspects of ivory trade in western Europe.


Asunto(s)
ADN Antiguo/análisis , Elefantes/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Animales , Portugal
12.
J Biol Res (Thessalon) ; 26: 13, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31720250

RESUMEN

BACKGROUND: The Kastellorizo island group (in the Dodecanese, Greece) is situated in the southeast corner of the Aegean Archipelago. It consists of twenty islets, of which the three largest (Kastellorizo, Ro and Strongyli) and seven smaller ones belong to Greece. Knowledge of the malacofauna on the islands is relatively poor. Only eight species were known prior to the present study, all from the islet of Kastellorizo. RESULTS: Here, using the scientific collections at the Natural History Museum of Crete collected mainly by the authors and also by several researchers since 1976, we reappraise the malacofauna of the island group. Thirty-one species were found in total (23 from Kastellorizo, 19 from Ro, 15 from Strongyli, 10 from Agios Georgios, 14 from Agrielia, 6 from Psomi and 10 from Psoradia). CONCLUSIONS: The fact that there are no endemic snail species in the islands can be accounted for by their proximity to the Turkish coast, their common paleogeography with Turkey until the Late Pleistocene and Holocene, and the influence of humans. All but two species, Mastus etuberculatus and Vitrea riedeliana, are known from the adjacent Turkish coasts. Together with the subfossil species found on the smaller islets, the predominance of different species on each islet suggests a continuous substitution from the source areas of Turkey and the Aegean.

13.
J Biol Res (Thessalon) ; 26: 6, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31489280

RESUMEN

Herein we present the recently founded Hellenic Evolutionary Society (HEVOS) that has been recently instituted to promote evolution and scientific thinking among the Greek-speaking public. HEVOS is a timely initiative, given the low levels of acceptance of evolution by Greek society and the almost complete lack of evolution teaching in primary and secondary education in Greece. Herein, the main aims of the Society are presented.

14.
Mol Phylogenet Evol ; 138: 193-204, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31129348

RESUMEN

The evolutionary history of taxa with limited overseas dispersal abilities is considered to be majorly influenced by vicariant events constituting them as model organisms for the interpretation of evolutionary processes. An excellent candidate are the wall lizards of the genus Podarcis exhibiting an impressive level of genetic and morphological diversification and harboring several cases of recently discovered cryptic diversity. In this study, we investigated the effect of palaeogeographic events on the wall lizards' biodiversity patterns in the Aegean (Greece) as well as the evolutionary processes that acted both in space and time. To accomplish that we studied a group of three endemic Podarcis species (i.e., P. cretensis, P. levendis, and P. peloponnesiacus) both at the intra and interspecific levels employing mitochondrial and nuclear DNA sequence data as well as microsatellites. Furthermore, presence information coupled with bioclimatic data (i.e., species distribution modeling, and niche similarity analyses) shed light on the necessary ecological factors for the species' occurrence. These approaches revealed yet another case of cryptic diversity for this group of lizards, with the existence of two slightly overlapping lineages within P. peloponnesiacus and highly structured populations within P. cretensis. Species diversification occurred during the Pliocene with P. peloponnesiacus divergence into the two lineages dating back to 1.86 Mya. Furthermore, temperature and precipitation related environmental parameters were the most important ones regarding the current distribution of the studied species. Based on the results, we propose a more detailed phylogeographic scenario where both the paleogeography of the area and several environmental parameters have shaped the genetic diversity and the current distribution pattern of this species group.


Asunto(s)
Lagartos/clasificación , Filogenia , Filogeografía , Animales , Peninsula Balcánica , Biodiversidad , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Grecia , Lagartos/genética , Repeticiones de Microsatélite/genética , Especificidad de la Especie , Factores de Tiempo
15.
Nat Ecol Evol ; 3(1): 87-95, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510174

RESUMEN

Giant tortoises are among the longest-lived vertebrate animals and, as such, provide an excellent model to study traits like longevity and age-related diseases. However, genomic and molecular evolutionary information on giant tortoises is scarce. Here, we describe a global analysis of the genomes of Lonesome George-the iconic last member of Chelonoidis abingdonii-and the Aldabra giant tortoise (Aldabrachelys gigantea). Comparison of these genomes with those of related species, using both unsupervised and supervised analyses, led us to detect lineage-specific variants affecting DNA repair genes, inflammatory mediators and genes related to cancer development. Our study also hints at specific evolutionary strategies linked to increased lifespan, and expands our understanding of the genomic determinants of ageing. These new genome sequences also provide important resources to help the efforts for restoration of giant tortoise populations.


Asunto(s)
Envejecimiento/genética , Genoma , Tortugas/genética , Animales , Reparación del ADN/genética , Evolución Molecular , Células HEK293 , Humanos , Mediadores de Inflamación , Masculino , Neoplasias/genética , Filogenia , Densidad de Población
16.
Mol Phylogenet Evol ; 129: 325-337, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30218775

RESUMEN

Natural interspecific hybridization might be more important for the evolutionary history and speciation of animals than previously thought, considering several demographic and life history traits as well as habitat disturbance as factors that promote it. In this aspect, cetaceans comprise an interesting case in which the occurrence of sympatric species in mixed associations provides excellent opportunities for interspecific sexual interaction and the potential for hybridization. Here, we present evidence of natural hybridization for two cetacean species commonly occurring in the Greek Seas (Stenella coeruleoalba and Delphinus delphis), which naturally overlap in the Gulf of Corinth by analyzing highly resolving microsatellite DNA markers and mitochondrial DNA sequences in skin samples from 45 individuals of S. coeruleoalba, 12 D. delphis and three intermediate morphs. Employing several phylogenetic and population genetic approaches, we found 15 individuals that are potential hybrids including the three intermediate morphs, verifying the occurrence of natural hybridization between species of different genera. Their hybrids are fertile and able to reproduce not only with the other hybrids but also with each of the two-parental species. However, current evidence does not allow firm conclusions whether hybridization might constitute a step towards the generation of a new species and/or the swan song of an already existing species (i.e., D. delphis). Given that the focal species form mixed pods in several areas of Mediterranean, this study is an excellent opportunity to understand the mechanisms leading to hybridization in the context of gene flow and urges for the evaluation of the genetic status of common dolphins in the Mediterranean.


Asunto(s)
Delfín Común/genética , Hibridación Genética , Océanos y Mares , Stenella/genética , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Geografía , Grecia , Repeticiones de Microsatélite/genética , Filogenia , Procesos de Determinación del Sexo/genética
17.
Evol Appl ; 11(7): 1084-1093, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30026799

RESUMEN

High-throughput DNA sequencing allows efficient discovery of thousands of single nucleotide polymorphisms (SNPs) in nonmodel species. Population genetic theory predicts that this large number of independent markers should provide detailed insights into population structure, even when only a few individuals are sampled. Still, sampling design can have a strong impact on such inferences. Here, we use simulations and empirical SNP data to investigate the impacts of sampling design on estimating genetic differentiation among populations that represent three species of Galápagos giant tortoises (Chelonoidis spp.). Though microsatellite and mitochondrial DNA analyses have supported the distinctiveness of these species, a recent study called into question how well these markers matched with data from genomic SNPs, thereby questioning decades of studies in nonmodel organisms. Using >20,000 genomewide SNPs from 30 individuals from three Galápagos giant tortoise species, we find distinct structure that matches the relationships described by the traditional genetic markers. Furthermore, we confirm that accurate estimates of genetic differentiation in highly structured natural populations can be obtained using thousands of SNPs and 2-5 individuals, or hundreds of SNPs and 10 individuals, but only if the units of analysis are delineated in a way that is consistent with evolutionary history. We show that the lack of structure in the recent SNP-based study was likely due to unnatural grouping of individuals and erroneous genotype filtering. Our study demonstrates that genomic data enable patterns of genetic differentiation among populations to be elucidated even with few samples per population, and underscores the importance of sampling design. These results have specific implications for studies of population structure in endangered species and subsequent management decisions.

19.
Mol Phylogenet Evol ; 125: 177-187, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29555295

RESUMEN

Kotschy's Gecko, Mediodactylus kotschyi, is a small gecko native to southeastern Europe and the Levant. It displays great morphological variation with a large number of morphologically recognized subspecies. However, it has been suggested that it constitutes a species complex of several yet unrecognized species. In this study, we used multilocus sequence data (three mitochondrial and three nuclear gene fragments) to estimate the phylogenetic relationships of 174 specimens from 129 sampling localities, covering a substantial part of the distribution range of the species. Our results revealed high genetic diversity of M. kotschyi populations and contributed to our knowledge about the phylogenetic relationships and the estimation of the divergence times between them. Diversification within M. kotschyi began approximately 15 million years ago (Mya) in the Middle Miocene, whereas the diversification within most of the major clades have been occurred in the last 5 Mya. Species delimitation analysis suggests there exists five species within the complex, and we propose to tentatively recognize the following taxa as full species: M. kotschyi (mainland Balkans, most of Aegean islands, and Italy), M. orientalis (Levant, Cyprus, southern Anatolia, and south-eastern Aegean islands), M. danilewskii (Black Sea region and south-western Anatolia), M. bartoni (Crete), and M. oertzeni (southern Dodecanese Islands). This newly recognized diversity underlines the complex biogeographical history of the Eastern Mediterranean region.


Asunto(s)
Sitios Genéticos , Variación Genética , Lagartos/clasificación , Lagartos/genética , Filogenia , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Geografía , ARN Ribosómico 16S/genética , Alineación de Secuencia , Especificidad de la Especie , Factores de Tiempo
20.
Mol Phylogenet Evol ; 125: 100-115, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29574273

RESUMEN

The Balkan Peninsula constitutes a biodiversity hotspot with high levels of species richness and endemism. The complex geological history of the Balkans in conjunction with the climate evolution are hypothesized as the main drivers generating this biodiversity. We investigated the phylogeography, historical demography, and population structure of closely related wall-lizard species from the Balkan Peninsula and southeastern Europe to better understand diversification processes of species with limited dispersal ability, from Late Miocene to the Holocene. We used several analytical methods integrating genome-wide SNPs (ddRADseq), microsatellites, mitochondrial and nuclear DNA data, as well as species distribution modelling. Phylogenomic analysis resulted in a completely resolved species level phylogeny, population level analyses confirmed the existence of at least two cryptic evolutionary lineages and extensive within species genetic structuring. Divergence time estimations indicated that the Messinian Salinity Crisis played a key role in shaping patterns of species divergence, whereas intraspecific genetic structuring was mainly driven by Pliocene tectonic events and Quaternary climatic oscillations. The present work highlights the effectiveness of utilizing multiple methods and data types coupled with extensive geographic sampling to uncover the evolutionary processes that shaped the species over space and time.


Asunto(s)
Lagartos/clasificación , Modelos Biológicos , Filogeografía , Animales , Peninsula Balcánica , Teorema de Bayes , Biodiversidad , Calibración , ADN Mitocondrial/genética , Variación Genética , Genética de Población , Genómica , Haplotipos/genética , Lagartos/genética , Repeticiones de Microsatélite/genética , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...