Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(4): 1739-1752, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38581206

RESUMEN

The development of terrestrial ecosystems depends greatly on plant mutualists such as mycorrhizal fungi. The global retreat of glaciers exposes nutrient-poor substrates in extreme environments and provides a unique opportunity to study early successions of mycorrhizal fungi by assessing their dynamics and drivers. We combined environmental DNA metabarcoding and measurements of local conditions to assess the succession of mycorrhizal communities during soil development in 46 glacier forelands around the globe, testing whether dynamics and drivers differ between mycorrhizal types. Mycorrhizal fungi colonized deglaciated areas very quickly (< 10 yr), with arbuscular mycorrhizal fungi tending to become more diverse through time compared to ectomycorrhizal fungi. Both alpha- and beta-diversity of arbuscular mycorrhizal fungi were significantly related to time since glacier retreat and plant communities, while microclimate and primary productivity were more important for ectomycorrhizal fungi. The richness and composition of mycorrhizal communities were also significantly explained by soil chemistry, highlighting the importance of microhabitat for community dynamics. The acceleration of ice melt and the modifications of microclimate forecasted by climate change scenarios are expected to impact the diversity of mycorrhizal partners. These changes could alter the interactions underlying biotic colonization and belowground-aboveground linkages, with multifaceted impacts on soil development and associated ecological processes.


Asunto(s)
Biodiversidad , Cubierta de Hielo , Micorrizas , Micorrizas/fisiología , Cubierta de Hielo/microbiología , Suelo/química , Microclima , Microbiología del Suelo
2.
Nat Commun ; 15(1): 1246, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341420

RESUMEN

A major feature of the Anthropocene is the drastic increase in global soil erosion. Soil erosion is threatening Earth habitability not only as soils are an essential component of the Earth system but also because societies depend on soils. However, proper quantification of the impact of human activities on erosion over thousands of years is still lacking. This is particularly crucial in mountainous areas, where the highest erosion rates are recorded. Here we use the Lake Bourget catchment, one of the largest in the European Alps, to estimate quantitatively the impact of human activities on erosion. Based on a multi-proxy, source-to-sink approach relying on isotopic geochemistry, we discriminate the effects of climate fluctuations from those of human activities on erosion over the last 10,000 years. We demonstrate that until 3800 years ago, climate is the only driver of erosion. From that time on, climate alone cannot explain the measured rates of erosion. Thanks to an unprecedented regional paleoenvironmental reconstruction, we highlight that the development of pastoralism at high altitudes from the Bronze Age onwards and the extension of agriculture starting in the Middle Ages were key factors in the drastic increase in erosion observed in the Alps.

3.
Nat Plants ; 10(2): 256-267, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38233559

RESUMEN

The mechanisms underlying plant succession remain highly debated. Due to the local scope of most studies, we lack a global quantification of the relative importance of species addition 'versus' replacement. We assessed the role of these processes in the variation (ß-diversity) of plant communities colonizing the forelands of 46 retreating glaciers worldwide, using both environmental DNA and traditional surveys. Our findings indicate that addition and replacement concur in determining community changes in deglaciated sites, but their relative importance varied over time. Taxa addition dominated immediately after glacier retreat, as expected in harsh environments, while replacement became more important for late-successional communities. These changes were aligned with total ß-diversity changes, which were more pronounced between early-successional communities than between late-successional communities (>50 yr since glacier retreat). Despite the complexity of community assembly during plant succession, the observed global pattern suggests a generalized shift from the dominance of facilitation and/or stochastic processes in early-successional communities to a predominance of competition later on.


Asunto(s)
Cubierta de Hielo , Plantas
4.
Glob Chang Biol ; 30(1): e17057, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273541

RESUMEN

The worldwide retreat of glaciers is causing a faster than ever increase in ice-free areas that are leading to the emergence of new ecosystems. Understanding the dynamics of these environments is critical to predicting the consequences of climate change on mountains and at high latitudes. Climatic differences between regions of the world could modulate the emergence of biodiversity and functionality after glacier retreat, yet global tests of this hypothesis are lacking. Nematodes are the most abundant soil animals, with keystone roles in ecosystem functioning, but the lack of global-scale studies limits our understanding of how the taxonomic and functional diversity of nematodes changes during the colonization of proglacial landscapes. We used environmental DNA metabarcoding to characterize nematode communities of 48 glacier forelands from five continents. We assessed how different facets of biodiversity change with the age of deglaciated terrains and tested the hypothesis that colonization patterns are different across forelands with different climatic conditions. Nematodes colonized ice-free areas almost immediately. Both taxonomic and functional richness quickly increased over time, but the increase in nematode diversity was modulated by climate, so that colonization started earlier in forelands with mild summer temperatures. Colder forelands initially hosted poor communities, but the colonization rate then accelerated, eventually leveling biodiversity differences between climatic regimes in the long term. Immediately after glacier retreat, communities were dominated by colonizer taxa with short generation time and r-ecological strategy but community composition shifted through time, with increased frequency of more persister taxa with K-ecological strategy. These changes mostly occurred through the addition of new traits instead of their replacement during succession. The effects of local climate on nematode colonization led to heterogeneous but predictable patterns around the world that likely affect soil communities and overall ecosystem development.


Asunto(s)
Ecosistema , Nematodos , Animales , Suelo , Cubierta de Hielo , Biodiversidad
5.
Sci Total Environ ; 902: 165998, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536589

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) were studied in the soils of three proglacial areas in France (Noir and Chardon Glaciers) and Italy (Miage Glacier). PAH contents, PAH stocks and PAH contents normalized to the total organic carbon contents (PAHs/TOC ratio) were investigated along proglacial soil chronosequences to infer their evolutions with soil age (from 3 to 4200 years), where the PAH contamination was only related to long-range atmospheric transport. Evolutions of PAH and TOC contents, PAHs/TOC ratio and PAH stock were fitted with exponential and logarithmic relations. For the three proglacial areas, PAH contents increased rapidly during the first 150 years of soil development, ranged from 4 to 152 ng·g-1, and showed a strong relationship with total organic carbon (TOC) contents (r = 0.83, p < 0.05). The joint increase of PAH and TOC contents suggested that PAH accumulation in soils were not only driven by PAH inputs but also by the capacity of soils to store these contaminants. PAH contents in the oldest soils (from 1200 BCE and 2200 BCE) were similar than for soils from 1850 CE. The period 1850-2019 CE corresponded to a decrease in the PAHs/TOC ratio suggesting both a faster accumulation of TOC than PAHs and a dilution effect of PAHs already present in soils. For the oldest soils, the PAHs/TOC ratio appeared similar to those for soils from 1850 CE, with values ranging from 0.48 to 2.06 ng·mg-1, suggesting an equilibrium between both parameters for soils older than 170 years. Finally, PAH stocks ranged from 0.41 mg·m-2 to 6.80 mg·m-2 in the youngest and oldest soils, respectively. These results do not allow us to identify the same period of greatest emission as other studies (estimated ~1960), but they revealed changes in the capacity of soils to store these pollutants.

6.
Sci Total Environ ; 895: 165127, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37379921

RESUMEN

Metal-rich fumes emitted during ore smelting contribute to widespread anthropogenic contamination. Environmental archives (such as lake sediments) record fallouts deposited on lake and terrestrial surfaces during ancient mining and smelting activities. However, very few is known about the potential buffering effect of soils upon which metal falls out, prior to be released through runoff and or/erosion, hence leading to pervasive contamination fluxes long after the ceasing of metallurgical activities. Here we aim at assessing this long-term remobilisation in a mountainous catchment area. Lake sediments and soils were collected 7 km upward a 200-year-old historic mine. The PbAg mine of Peisey-Nancroix was operated between the 17th and the 19th centuries with a documented smelting period of 80 years. In lake sediments, the total Pb content varies from 29 mg.kg-1 prior smelting to 148 mg.kg-1 during ore smelting. Pb isotopes in lake sediments and soils provide evidence of anthropogenic Pb from the local ore (206Pb/207Pb = 1.173; 208Pb/206Pb = 2.094) during and after smelting, suggesting anthropogenic Pb remobilisation for 200 years. The accumulation rates of anthropogenic Pb calculated in lake sediments after the smelting period confirm such a remobilisation. Despite a decrease in this accumulation rate through time, soils still contain significant stocks of anthropogenic Pb (54-89 % of PbANTH). The distribution of present-day anthropogenic Pb in the catchment area depends mainly on topographic characteristics. Coupling lake sediments and soils investigations is thus necessary to constrain the long-term persistence and remobilisation of a diffuse contamination related to mining activities.

7.
Sci Total Environ ; 866: 161205, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36603640

RESUMEN

Land use change and anthropogenic forcing can drastically alter the rates and patterns of sediment transport and modify biodiversity and ecosystem functions in coastal transition zones, such as the coastal ecosystems. Molecular studies of sediment extracted DNAs provide information on currently living organisms within the upper layers or buried from various periods of time, but might also provide knowledge on species dynamics, replacement and turnover. In this study, we evaluated the eukaryotic communities of a marine core that present a shift in soil erosion that was linked to glyphosate usage and correlated to chlordecone resurgence since 2000. We show differences in community composition between samples from the second half of the last century and those from the last two decades. Temporal analyses of the relative abundance, alpha diversity, and beta diversity for the two periods demonstrated different temporal dynamics depending on the considered taxonomic group. In particular, Ascomycetes showed a decrease in abundance over the most recent period associated with changes in community membership but not community structure. Two photosynthetic groups, Bacillariophyceae and Prasinophytes clade VII, showed a different pattern with an increase in abundance since the beginning of the 21st century with a decrease in diversity and evenness to form more heterogeneous communities dominated by a few abundant OTUs. Altogether, our data reveal that agricultural usages such as pesticide use can have long-term and species-dependent implications for microeukaryotic coastal communities on a tropical island.


Asunto(s)
Ecosistema , Plaguicidas , Eucariontes , Biodiversidad , Agricultura
8.
Mol Ecol ; 32(23): 6304-6319, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35997629

RESUMEN

Ice-free areas are expanding worldwide due to dramatic glacier shrinkage and are undergoing rapid colonization by multiple lifeforms, thus representing key environments to study ecosystem development. It has been proposed that the colonization dynamics of deglaciated terrains is different between surface and deep soils but that the heterogeneity between communities inhabiting surface and deep soils decreases through time. Nevertheless, tests of this hypothesis remain scarce, and it is unclear whether patterns are consistent among different taxonomic groups. Here, we used environmental DNA metabarcoding to test whether community diversity and composition of six groups (Eukaryota, Bacteria, Mycota, Collembola, Insecta, and Oligochaeta) differ between the surface (0-5 cm) and deeper (7.5-20 cm) soil at different stages of development and across five Alpine glaciers. Taxonomic diversity increased with time since glacier retreat and with soil evolution. The pattern was consistent across groups and soil depths. For Eukaryota and Mycota, alpha-diversity was highest at the surface. Time since glacier retreat explained more variation of community composition than depth. Beta-diversity between surface and deep layers decreased with time since glacier retreat, supporting the hypothesis that the first 20 cm of soil tends to homogenize through time. Several molecular operational taxonomic units of bacteria and fungi were significant indicators of specific depths and/or soil development stages, confirming the strong functional variation of microbial communities through time and depth. The complexity of community patterns highlights the importance of integrating information from multiple taxonomic groups to unravel community variation in response to ongoing global changes.


Asunto(s)
Microbiota , Microbiología del Suelo , Bacterias/genética , Suelo , Eucariontes , Hongos/genética , Microbiota/genética , Cubierta de Hielo/microbiología
9.
Environ Sci Technol ; 55(4): 2296-2306, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33507080

RESUMEN

The widespread use of pesticides in agriculture during the last several decades has contaminated soils and different Critical Zone (CZ) compartments, defined as the area extended from the top of the vegetation canopy to the groundwater table, and it integrates interactions of the atmosphere, lithosphere, biosphere, and hydrosphere. However, the long-term fate, storage, and transfer dynamics of persistent pesticides in CZ in a changing world remain poorly understood. In the French West Indies, chlordecone (CLD), a toxic organochlorine insecticide, was extensively applied to banana fields to control banana weevil from 1972 to 1993 after which it was banned. Here, to understand CZ trajectories we apply a retrospective observation based on marine sediment core analyses to monitor long-term CLD transfer, fate, and consequences in Guadeloupe and Martinique islands. Both CLD profiles show synchronous chronologies. We hypothesized that the use of glyphosate, a postemergence herbicide, from the late 1990s onward induced CZ modification with an increase in soil erosion and led to the release of the stable CLD stored in the soils of polluted fields. CLD fluxes drastically increased when glyphosate use began, leading to widespread ecosystem contamination. As glyphosate is used globally, ecotoxicological risk management strategies should consider how its application affects persistent pesticide storage in soils, transfer dynamics, and widespread contamination.


Asunto(s)
Clordecona , Insecticidas , Contaminantes del Suelo , Clordecona/análisis , Ecosistema , Glicina/análogos & derivados , Guadalupe , Insecticidas/análisis , Estudios Retrospectivos , Contaminantes del Suelo/análisis , Indias Occidentales , Glifosato
10.
Glob Chang Biol ; 27(8): 1662-1677, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33342032

RESUMEN

Since the last glacial maximum, soil formation related to ice-cover shrinkage has been one major sink of carbon accumulating as soil organic matter (SOM), a phenomenon accelerated by the ongoing global warming. In recently deglacierized forelands, processes of SOM accumulation, including those that control carbon and nitrogen sequestration rates and biogeochemical stability of newly sequestered carbon, remain poorly understood. Here, we investigate the build-up of SOM during the initial stages (up to 410 years) of topsoil development in 10 glacier forelands distributed on four continents. We test whether the net accumulation of SOM on glacier forelands (i) depends on the time since deglacierization and local climatic conditions (temperature and precipitation); (ii) is accompanied by a decrease in its stability and (iii) is mostly due to an increasing contribution of organic matter from plant origin. We measured total SOM concentration (carbon, nitrogen), its relative hydrogen/oxygen enrichment, stable isotopic (13 C, 15 N) and carbon functional groups (C-H, C=O, C=C) compositions, and its distribution in carbon pools of different thermal stability. We show that SOM content increases with time and is faster on forelands experiencing warmer climates. The build-up of SOM pools shows consistent trends across the studied soil chronosequences. During the first decades of soil development, the low amount of SOM is dominated by a thermally stable carbon pool with a small and highly thermolabile pool. The stability of SOM decreases with soil age at all sites, indicating that SOM storage is dominated by the accumulation of labile SOM during the first centuries of soil development, and suggesting plant carbon inputs to soil (SOM depleted in nitrogen, enriched in hydrogen and in aromatic carbon). Our findings highlight the potential vulnerability of SOM stocks from proglacial areas to decomposition and suggest that their durability largely depends on the relative contribution of carbon inputs from plants.


Asunto(s)
Cubierta de Hielo , Suelo , Carbono , Nitrógeno , Temperatura
11.
Sci Rep ; 10(1): 10502, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601368

RESUMEN

eDNA refers to DNA extracted from an environmental sample with the goal of identifying the occurrence of past or current biological communities in aquatic and terrestrial environments. However, there is currently a lack of knowledge regarding the soil memory effect and its potential impact on lake sediment eDNA records. To investigate this issue, two contrasted sites located in cultivated environments in France were studied. In the first site, soil samples were collected (n = 30) in plots for which the crop rotation history was documented since 1975. In the second site, samples were collected (n = 40) to compare the abundance of currently observed taxa versus detected taxa in cropland and other land uses. The results showed that the last cultivated crop was detected in 100% of the samples as the most abundant. In addition, weeds were the most abundant taxa identified in both sites. Overall, these results illustrate the potential of eDNA analyses for identifying the recent (< 10 years) land cover history of soils and outline the detection of different taxa in cultivated plots. The capacity of detection of plant species grown on soils delivering sediments to lacustrine systems is promising to improve our understanding of sediment transfer processes over short timescales.


Asunto(s)
ADN Ambiental/análisis , Sedimentos Geológicos/química , Suelo/química , ADN de Plantas/genética , Francia , Lagos , Plantas/genética
12.
Sci Total Environ ; 665: 873-881, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30790760

RESUMEN

An excessive supply of sediment is observed in numerous rivers across the world where it leads to deleterious impacts. Information on the sources delivering this material to waterbodies is required to design effective management measures, and sediment tracing or fingerprinting techniques are increasingly used to quantify the amount of sediment derived from different sources. However, the current methods used to identify the land use contributions to sediment have a limited discrimination power. Here, we investigated the potential of environmental DNA (eDNA) to provide more detailed information on the plant species found in sediment source areas as a next generation fingerprint. To this end, flood sediment deposits (n = 12) were collected in 2017 in two catchments impacted by the Fukushima radioactive fallout along differing river sections draining forests, cropland or a mix of both land uses. Conventional fingerprints (i.e. fallout radionuclides and organic matter properties) were also measured in these samples. The conventional fingerprint model results showed that most sediment samples contained a dominant proportion of subsoil material. Nevertheless, the eDNA information effectively discriminated the three above-mentioned groups of sediment, with the dominance of tree, shrub and fern species in sediment sampled in rivers draining forests versus a majority of grass, algae and cultivated plant species in sediment collected in rivers draining cropland. Based on these encouraging results, future research should examine the potential of eDNA in mixed land use catchments where the contribution of topsoil to sediment dominates and where the cultivation of land has not been abandoned in order to better characterize the memory effect of eDNA in soils and sediment.


Asunto(s)
ADN/análisis , Accidente Nuclear de Fukushima , Sedimentos Geológicos/análisis , Monitoreo de Radiación/métodos , Ceniza Radiactiva/análisis , Contaminantes Radiactivos del Agua/análisis , Carbono/análisis , Isótopos de Carbono/análisis , Japón , Nitrógeno/análisis , Isótopos de Nitrógeno/análisis , Radioisótopos/análisis
13.
Sci Adv ; 4(5): eaar4292, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29750197

RESUMEN

What are the long-term consequences of invasive species? After invasion, how long do ecosystems require to reach a new equilibrium? Answering these questions requires long-term, high-resolution data that are vanishingly rare. We combined the analysis of environmental DNA extracted from a lake sediment core, coprophilous fungi, and sedimentological analyses to reconstruct 600 years of ecosystem dynamics on a sub-Antarctic island and to identify the impact of invasive rabbits. Plant communities remained stable from AD 1400 until the 1940s, when the DNA of invasive rabbits was detected in sediments. Rabbit detection corresponded to abrupt changes of plant communities, with a continuous decline of a dominant plant species. Furthermore, erosion rate abruptly increased with rabbit abundance. Rabbit impacts were very fast and were stronger than the effects of climate change during the 20th century. Lake sediments can allow an integrated temporal analysis of ecosystems, revealing the impact of invasive species over time and improving our understanding of underlying mechanisms.


Asunto(s)
ADN , Ecosistema , Sedimentos Geológicos , Especies Introducidas , Lagos , Animales , Biodiversidad , Cambio Climático , Sedimentos Geológicos/química , Mamíferos/clasificación , Mamíferos/genética , Plantas/clasificación , Plantas/genética
14.
Mol Ecol ; 24(7): 1485-98, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25735209

RESUMEN

Paleoenvironmental studies are essential to understand biodiversity changes over long timescales and to assess the relative importance of anthropogenic and environmental factors. Sedimentary ancient DNA (sedaDNA) is an emerging tool in the field of paleoecology and has proven to be a complementary approach to the use of pollen and macroremains for investigating past community changes. SedaDNA-based reconstructions of ancient environments often rely on indicator taxa or expert knowledge, but quantitative ecological analyses might provide more objective information. Here, we analysed sedaDNA to investigate plant community trajectories in the catchment of a high-elevation lake in the Alps over the last 6400 years. We combined data on past and present plant species assemblages along with sedimentological and geochemical records to assess the relative impact of human activities through pastoralism, and abiotic factors (temperature and soil evolution). Over the last 6400 years, we identified significant variation in plant communities, mostly related to soil evolution and pastoral activities. An abrupt vegetational change corresponding to the establishment of an agropastoral landscape was detected during the Late Holocene, approximately 4500 years ago, with the replacement of mountain forests and tall-herb communities by heathlands and grazed lands. Our results highlight the importance of anthropogenic activities in mountain areas for the long-term evolution of local plant assemblages. SedaDNA data, associated with other paleoenvironmental proxies and present plant assemblages, appear to be a relevant tool for reconstruction of plant cover history. Their integration, in conjunction with classical tools, offers interesting perspectives for a better understanding of long-term ecosystem dynamics under the influence of human-induced and environmental drivers.


Asunto(s)
Ecosistema , Sedimentos Geológicos/análisis , Lagos , Plantas/clasificación , Agricultura , Cambio Climático , Código de Barras del ADN Taxonómico , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Plantas/genética , Dinámica Poblacional
15.
Proc Natl Acad Sci U S A ; 111(44): 15647-52, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25313074

RESUMEN

Agricultural pesticide use has increased worldwide during the last several decades, but the long-term fate, storage, and transfer dynamics of pesticides in a changing environment are poorly understood. Many pesticides have been progressively banned, but in numerous cases, these molecules are stable and may persist in soils, sediments, and ice. Many studies have addressed the question of their possible remobilization as a result of global change. In this article, we present a retro-observation approach based on lake sediment records to monitor micropollutants and to evaluate the long-term succession and diffuse transfer of herbicides, fungicides, and insecticide treatments in a vineyard catchment in France. The sediment allows for a reliable reconstruction of past pesticide use through time, validated by the historical introduction, use, and banning of these organic and inorganic pesticides in local vineyards. Our results also revealed how changes in these practices affect storage conditions and, consequently, the pesticides' transfer dynamics. For example, the use of postemergence herbicides (glyphosate), which induce an increase in soil erosion, led to a release of a banned remnant pesticide (dichlorodiphenyltrichloroethane, DDT), which had been previously stored in vineyard soil, back into the environment. Management strategies of ecotoxicological risk would be well served by recognition of the diversity of compounds stored in various environmental sinks, such as agriculture soil, and their capability to become sources when environmental conditions change.


Asunto(s)
Ecosistema , Plaguicidas/química , Suelo/química , Aguas Residuales/química
16.
Nat Commun ; 5: 3211, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24487920

RESUMEN

The reconstruction of human-driven, Earth-shaping dynamics is important for understanding past human/environment interactions and for helping human societies that currently face global changes. However, it is often challenging to distinguish the effects of the climate from human activities on environmental changes. Here we evaluate an approach based on DNA metabarcoding used on lake sediments to provide the first high-resolution reconstruction of plant cover and livestock farming history since the Neolithic Period. By comparing these data with a previous reconstruction of erosive event frequency, we show that the most intense erosion period was caused by deforestation and overgrazing by sheep and cowherds during the Late Iron Age and Roman Period. Tracking plants and domestic mammals using lake sediment DNA (lake sedDNA) is a new, promising method for tracing past human practices, and it provides a new outlook of the effects of anthropogenic factors on landscape-scale changes.


Asunto(s)
Crianza de Animales Domésticos/historia , ADN/análisis , Sedimentos Geológicos/análisis , Alnus/química , Animales , Bovinos , ADN/química , Código de Barras del ADN Taxonómico , Francia , Historia Antigua , Caballos , Humanos , Lagos , Pinus/química , Ovinos , Árboles/química
17.
Water Res ; 44(13): 3847-60, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20569961

RESUMEN

Microbial contamination of surface waters frequently occurs on permanent natural grasslands subject to extensive grazing. Management of these problems requires developing methods to identify critical source areas that are responsible of significant losses of fecal microorganisms. In this study, GIS analysis of watersheds was used to calculate the flow of fecal bacteria (Escherichia coli) to the outflow of a watershed by summing bacterial flows in runoff from pixels containing cowpats. Calculations were performed in two steps: (i) identification of pixels with bacteria and runoff by modeling the distribution of cowpats and variable sources of surface runoff, and (ii) parameterization by inverse analysis of deterministic and stochastic functions for bacterial emission from cowpats and for retention during their transmission to the watershed outflow. During bacterial transport in water flow, bacterial retention on the soil surface has a large influence. Despite this effect, bacterial concentration in runoff remains high. In general, cowpat age, runoff volumes and the location and proportions of bacteria-emitting and non-emitting surfaces determine critical source areas and bacterial flows at the watershed outflow. These data are discussed in terms of feasibility of solutions for management of watercourses and grazing practices.


Asunto(s)
Escherichia coli/fisiología , Heces/microbiología , Geografía , Microbiología del Agua , Contaminación del Agua/análisis , Animales , Bovinos , Simulación por Computador , Escherichia coli/aislamiento & purificación , Francia , Lluvia
18.
J Environ Qual ; 37(6): 2299-310, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18948484

RESUMEN

Our knowledge of Escherichia coli (E. coli) ecology in the field is very limited in the case of dairy alpine grassland soils. Here, our objective was to monitor field survival of E. coli in cow pats and underlying soils in four different alpine pasture units, and to determine whether the soil could constitute an environmental reservoir. E. coli was enumerated by MPN using a selective medium. E. coli survived well in cow pats (10(7) to 10(8) cells g(-1) dry pat), but cow pats disappeared within about 2 mo. In each pasture unit, constant levels of E. coli (10(3) to 10(4) cells g(-1) dry soil) were recovered from all topsoil (0-5 cm) samples regardless of the sampling date, that is, under the snow cover, immediately after snow melting, or during the pasture season (during and after the decomposition of pats). In deeper soil layers below the root zone (5-25 cm), E. coli persistence varied according to soil type, with higher numbers recovered in poorly-drained soils (10(3) to 10(4) cells g(-1) dry soil) than in well-drained soils (< 10(2) cells g(-1) dry soil). A preliminary analysis of 38 partial uidA sequences of E. coli from pat and soils highlighted a cluster containing sequences only found in this work. Overall, this study raises the possibility that fecal E. coli could have formed a naturalized (sub)population, which is now part of the indigenous soil community of alpine pasture grasslands, the soil thus representing an environmental reservoir of E. coli.


Asunto(s)
Ecosistema , Escherichia coli/aislamiento & purificación , Heces/microbiología , Microbiología del Suelo , Animales , Bovinos , Industria Lechera , Escherichia coli/genética , Filogenia , Contaminantes del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...