Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 41(19): e185, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23980028

RESUMEN

DNA methylation is an important epigenetic mark in eukaryotes, and aberrant pattern of this modification is involved in numerous diseases such as cancers. Interestingly, DNA methylation is reversible and thus is considered a promising therapeutic target. Therefore, there is a need for identifying new small inhibitors of C5 DNA methyltransferases (DNMTs). Despite the development of numerous in vitro DNMT assays, there is a lack of reliable tests suitable for high-throughput screening, which can also give insights into inhibitor mechanisms of action. We developed a new test based on scintillation proximity assay meeting these requirements. After optimizing our assay on human DNMT1 and calibrating it with two known inhibitors, we carried out S-Adenosyl-l-Methionine and DNA competition studies on three inhibitors and were able to determine each mechanism of action. Finally, we showed that our test was applicable to 3 other methyltransferases sources: human DNMT3A, bacterial M.SssI and cellular extracts as well.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Extractos Celulares , Línea Celular , ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN/efectos de los fármacos , Dimetilsulfóxido , Humanos , Solventes , Tritio
2.
Nucleic Acids Res ; 40(6): 2566-76, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22139926

RESUMEN

TRF1 and TRF2 are key proteins in human telomeres, which, despite their similarities, have different behaviors upon DNA binding. Previous work has shown that unlike TRF1, TRF2 condenses telomeric, thus creating consequential negative torsion on the adjacent DNA, a property that is thought to lead to the stimulation of single-strand invasion and was proposed to favor telomeric DNA looping. In this report, we show that these activities, originating from the central TRFH domain of TRF2, are also displayed by the TRFH domain of TRF1 but are repressed in the full-length protein by the presence of an acidic domain at the N-terminus. Strikingly, a similar repression is observed on TRF2 through the binding of a TERRA-like RNA molecule to the N-terminus of TRF2. Phylogenetic and biochemical studies suggest that the N-terminal domains of TRF proteins originate from a gradual extension of the coding sequences of a duplicated ancestral gene with a consequential progressive alteration of the biochemical properties of these proteins. Overall, these data suggest that the N-termini of TRF1 and TRF2 have evolved to finely regulate their ability to condense DNA.


Asunto(s)
Telómero/química , Proteína 1 de Unión a Repeticiones Teloméricas/química , Proteína 2 de Unión a Repeticiones Teloméricas/química , Secuencia de Aminoácidos , ADN/química , ADN/metabolismo , Evolución Molecular , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , ARN/metabolismo , Homología de Secuencia de Aminoácido , Telómero/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/metabolismo
3.
FEBS Lett ; 584(17): 3785-99, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20696167

RESUMEN

A major issue in telomere research is to understand how the integrity of chromosome ends is controlled. Although several nucleoprotein complexes have been described at the telomeres of different organisms, it is still unclear how they confer a structural identity to chromosome ends in order to mask them from DNA repair and to ensure their proper replication. In this review, we describe how telomeric nucleoprotein complexes are structured, comparing different organisms and trying to link these structures to telomere biology. It emerges that telomeres are formed by a complex and specific network of interactions between DNA, RNA and proteins. The fact that these interactions and associated activities are reinforcing each other might help to guaranty the robustness of telomeric functions across the cell cycle and in the event of cellular perturbations. We propose that telomeric nucleoprotein complexes orient cell fate through dynamic transitions in their structures and their organization.


Asunto(s)
Telómero/química , Telómero/genética , Animales , ADN/genética , Reparación del ADN/genética , Variación Genética , Humanos , Mamíferos , Oxytricha/genética , Proteínas/genética , ARN/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Secuencias Repetidas en Tándem , Telómero/metabolismo
4.
Cell ; 142(2): 230-42, 2010 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-20655466

RESUMEN

Human telomeres are protected from DNA damage by a nucleoprotein complex that includes the repeat-binding factor TRF2. Here, we report that TRF2 regulates the 5' exonuclease activity of its binding partner, Apollo, a member of the metallo-beta-lactamase family that is required for telomere integrity during S phase. TRF2 and Apollo also suppress damage to engineered interstitial telomere repeat tracts that were inserted far away from chromosome ends. Genetic data indicate that DNA topoisomerase 2alpha acts in the same pathway of telomere protection as TRF2 and Apollo. Moreover, TRF2, which binds preferentially to positively supercoiled DNA substrates, together with Apollo, negatively regulates the amount of TOP1, TOP2alpha, and TOP2beta at telomeres. Our data are consistent with a model in which TRF2 and Apollo relieve topological stress during telomere replication. Our work also suggests that cellular senescence may be caused by topological problems that occur during the replication of the inner portion of telomeres.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Replicación del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Senescencia Celular , Daño del ADN , Exodesoxirribonucleasas , Humanos , Estructura Terciaria de Proteína
5.
EMBO J ; 29(13): 2230-41, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20551906

RESUMEN

Progressive telomere attrition or deficiency of the protective shelterin complex elicits a DNA damage response as a result of a cell's inability to distinguish dysfunctional telomeric ends from DNA double-strand breaks. SNMIB/Apollo is a shelterin-associated protein and a member of the SMN1/PSO2 nuclease family that localizes to telomeres through its interaction with TRF2. Here, we generated SNMIB/Apollo knockout mouse embryo fibroblasts (MEFs) to probe the function of SNMIB/Apollo at mammalian telomeres. SNMIB/Apollo null MEFs exhibit an increased incidence of G2 chromatid-type fusions involving telomeres created by leading-strand DNA synthesis, reflective of a failure to protect these telomeres after DNA replication. Mutations within SNMIB/Apollo's conserved nuclease domain failed to suppress this phenotype, suggesting that its nuclease activity is required to protect leading-strand telomeres. SNMIB/Apollo(-/-)ATM(-/-) MEFs display robust telomere fusions when Trf2 is depleted, indicating that ATM is dispensable for repair of uncapped telomeres in this setting. Our data implicate the 5'-3' exonuclease function of SNM1B/Apollo in the generation of 3' single-stranded overhangs at newly replicated leading-strand telomeres to protect them from engaging the non-homologous end-joining pathway.


Asunto(s)
Reparación del ADN , Fibroblastos/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Aminopeptidasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/metabolismo , Cromosomas/metabolismo , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Embrión de Mamíferos/citología , Exodesoxirribonucleasas , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Serina Proteasas/metabolismo , Complejo Shelterina , Proteínas de Unión a Telómeros/genética , Tripeptidil Peptidasa 1 , Proteínas Supresoras de Tumor/metabolismo
6.
J Biol Inorg Chem ; 15(5): 641-54, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20191372

RESUMEN

Telomeres, the nucleoprotein complexes located at the ends of chromosomes, are involved in chromosome protection and genome stability. Telomeric repeat binding factor 1 (TRF1) and telomeric repeat binding factor 2 (TRF2) are the two telomeric proteins that bind to duplex telomeric DNA through interactions between their C-terminal domain and several guanines of the telomeric tract. Since the antitumour drug cisplatin binds preferentially to two adjacent guanines, we have investigated whether cisplatin adducts could affect the binding of TRF1 and TRF2 to telomeric DNA and the property of TRF2 to stimulate telomeric invasion, a process that is thought to participate in the formation of the t-loop. We show that the binding of TRF1 and TRF2 to telomeric sequences selectively modified by one GG chelate of cisplatin is markedly affected by cisplatin but that the effect is more drastic for TRF2 than for TRF1 (3-5-fold more sensitivity for TRF2 than for TRF1). We also report that platinum adducts cause a decrease in TRF2-dependent stimulation of telomeric invasion in vitro. Finally, in accordance with in vitro data, analysis of telomeric composition after cisplatin treatment reveals that 60% of TRF2 dissociate from telomeres.


Asunto(s)
Cisplatino/química , Cisplatino/farmacología , ADN/química , ADN/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/química , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Sitios de Unión/efectos de los fármacos , Línea Celular , ADN/síntesis química , Humanos , Unión Proteica/efectos de los fármacos , Complejo Shelterina , Telómero/metabolismo
7.
EMBO J ; 28(6): 641-51, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19197240

RESUMEN

The ability of the telomeric DNA-binding protein, TRF2, to stimulate t-loop formation while preventing t-loop deletion is believed to be crucial to maintain telomere integrity in mammals. However, little is known on the molecular mechanisms behind these properties of TRF2. In this report, we show that TRF2 greatly increases the rate of Holliday junction (HJ) formation and blocks the cleavage by various types of HJ resolving activities, including the newly identified human GEN1 protein. By using potassium permanganate probing and differential scanning calorimetry, we reveal that the basic domain of TRF2 induces structural changes to the junction. We propose that TRF2 contributes to t-loop stabilisation by stimulating HJ formation and by preventing resolvase cleavage. These findings provide novel insights into the interplay between telomere protection and homologous recombination and suggest a general model in which TRF2 maintains telomere integrity by controlling the turnover of HJ at t-loops and at regressed replication forks.


Asunto(s)
ADN Cruciforme/metabolismo , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Bacterias/enzimología , Emparejamiento Base , Secuencia de Bases , Bioensayo , Histidina/metabolismo , Resolvasas de Unión Holliday/metabolismo , Humanos , Datos de Secuencia Molecular , Permanganato de Potasio/farmacología , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Recombinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Proteína 2 de Unión a Repeticiones Teloméricas/química
8.
Nat Struct Mol Biol ; 14(2): 147-54, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17220898

RESUMEN

Telomeres can fold into t-loops that may result from the invasion of the 3' overhang into duplex DNA. Their formation is facilitated in vitro by the telomeric protein TRF2, but very little is known regarding the mechanisms involved. Here we reveal that TRF2 generates positive supercoiling and condenses DNA. Using a variety of TRF2 mutants, we demonstrate a strong correlation between this topological activity and the ability to stimulate strand invasion. We also report that these properties require the combination of the TRF-homology (TRFH) domain of TRF2 with either its N- or C-terminal DNA-binding domains. We propose that TRF2 complexes, by constraining DNA around themselves in a right-handed conformation, can induce untwisting of the neighboring DNA, thereby favoring strand invasion. Implications of this topological model in t-loop formation and telomere homeostasis are discussed.


Asunto(s)
ADN/química , Telómero/química , Proteína 2 de Unión a Repeticiones Teloméricas/química , ADN Superhelicoidal/química , Humanos , Microscopía de Fuerza Atómica , Conformación de Ácido Nucleico , Proteína 1 de Unión a Repeticiones Teloméricas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA