Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Earth Space Chem ; 7(12): 2382-2392, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38148993

RESUMEN

Isotope fractionation related to photochemical reactions and planktonic uptake at the base of the food web is a major uncertainty in the biological application of mercury (Hg) stable isotopes. In freshwater systems, it is unclear how competitive interactions among methylmercury (MeHg), dissolved organic matter (DOM), and phytoplankton govern the magnitude of mass-dependent and mass-independent fractionation. This study investigated how DOM alters rates of planktonic MeHg uptake and photodegradation and corresponding Hg isotope fractionation in the presence of freshwater phytoplankton species, Raphidocelis subcapitata. Outdoor sunlight exposure experiments utilizing R. subcapitata were performed in the presence of different DOM samples using environmentally relevant ratios of MeHg-DOM thiol groups. The extent of Δ199Hg in phytoplankton incubations (2.99‰ St. Louis River HPOA, 1.88‰ Lake Erie HPOA) was lower compared to paired abiotic control experiments (4.29 and 2.86‰, respectively) after ∼30 h of irradiation, resulting from cell shading or other limiting factors reducing the extent of photodemethylation. Although the Δ199Hg/Δ201Hg ratio was uniform across experiments (∼1.4), Δ199Hg/δ202Hg slopes varied dramatically (from -0.96 to 15.4) across incubations with R. subcapitata and DOM. In addition, no evidence of Hg isotope fractionation was observed within R. subcapitata cells. This study provides a refined examination of Hg isotope fractionation markers for key processes occurring in the lower food web prior to bioaccumulation, critical for accurately accounting for the photochemical processing of Hg isotopes across a wide spectrum of freshwater systems.

2.
Chem Res Toxicol ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698991

RESUMEN

Aerosol formation and production yields from 11 carbonyls (carbonyl concentration per aerosol mass unit) were investigated (1) from a fourth-generation (4th gen) e-cigarette device at different coil resistances and coil age (0-5000 puffs) using unflavored e-liquid with 2% benzoic acid nicotine salt, (2) between a sub-ohm third-generation (3rd gen) tank mod at 0.12 Ω and a 4th gen pod at 1.2 Ω using e-liquid with nicotine salt, together with nicotine yield, and (3) from 3rd gen coils of different metals (stainless steel, kanthal, nichrome) using e-liquid with freebase nicotine. Coil resistance had an inverse relationship with coil temperature, and coil temperature was directly proportional to aerosol mass formation. Trends in carbonyl yields depended on carbonyl formation mechanisms. Carbonyls produced primarily from thermal degradation chemistry (e.g., formaldehyde, acetaldehyde, acrolein, propionaldehyde) increased per aerosol mass with higher coil resistances, despite lower coil temperature. Carbonyls produced primarily from chemistry initiated by reactive oxygen species (ROS) (e.g., hydroxyacetone, dihydroxyacetone, methylglyoxal, glycolaldehyde, lactaldehyde) showed the opposite trend. Coil age did not alter coil temperature nor aerosol mass formation but had a significant effect on carbonyl formation. Thermal carbonyls were formed optimally at 500 puffs in our study and then declined to a baseline, whereas ROS-derived carbonyls showed a slow rise to a maximum trend with coil aging. The 3rd gen versus 4th gen device comparison mirrored the trends in coil resistance. Nicotine yields per aerosol mass were consistent between 3rd and 4th gen devices. Coil material did not significantly alter aerosol formation nor carbonyl yield when adjusted for wattage. This work shows that sub-ohm coils may not necessarily produce higher carbonyl yields even when they produce more aerosol mass. Furthermore, carbonyl formation is dynamic and not generalizable during the coil's lifetime. Finally, studies that compare data across different e-cigarette devices, coil age, and coil anatomy should account for the aerosol chemistry trends that depend on these parameters.

3.
ISME J ; 17(10): 1705-1718, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495676

RESUMEN

Brownlee Reservoir is a mercury (Hg)-impaired hydroelectric reservoir that exhibits dynamic hydrological and geochemical conditions and is located within the Hells Canyon Complex in Idaho, USA. Methylmercury (MeHg) contamination in fish is a concern in the reservoir. While MeHg production has historically been attributed to sulfate-reducing bacteria and methanogenic archaea, microorganisms carrying the hgcA gene are taxonomically and metabolically diverse and the major biogeochemical cycles driving mercury (Hg) methylation are not well understood. In this study, Hg speciation and redox-active compounds were measured throughout Brownlee Reservoir across the stratified period in four consecutive years (2016-2019) to identify the location where and redox conditions under which MeHg is produced. Metagenomic sequencing was performed on a subset of samples to characterize the microbial community with hgcA and identify possible links between biogeochemical cycles and MeHg production. Biogeochemical profiles suggested in situ water column Hg methylation was the major source of MeHg. These profiles, combined with genome-resolved metagenomics focused on hgcA-carrying microbes, indicated that MeHg production occurs in this system under nitrate- or manganese-reducing conditions, which were previously thought to preclude Hg-methylation. Using this multidisciplinary approach, we identified the cascading effects of interannual variability in hydrology on the redox status, microbial metabolic strategies, abundance and metabolic diversity of Hg methylators, and ultimately MeHg concentrations throughout the reservoir. This work expands the known conditions conducive to producing MeHg and suggests that the Hg-methylation mitigation efforts by nitrate or manganese amendment may be unsuccessful in some locations.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Compuestos de Metilmercurio/metabolismo , Nitratos , Manganeso , Mercurio/metabolismo , Archaea/genética , Archaea/metabolismo
4.
Environ Sci Technol Lett ; 10(6): 499-505, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37333940

RESUMEN

The chemical nature and stability of reduced dissolved organic sulfur (DOSRed) have implications on the biogeochemical cycling of trace and major elements across fresh and marine aquatic environments, but the underlying processes governing DOSRed stability remain obscure. Here, dissolved organic matter (DOM) was isolated from a sulfidic wetland, and laboratory experiments quantified dark and photochemical oxidation of DOSRed using atomic-level measurement of sulfur X-ray absorption near-edge structure (XANES) spectroscopy. DOSRed was completely resistant to oxidation by molecular oxygen in the dark and underwent rapid and quantitative oxidation to inorganic sulfate (SO42-) in the presence of sunlight. The rate of DOSRed oxidation to SO42- greatly exceeded that of DOM photomineralization, resulting in a 50% loss of total DOS and 78% loss of DOSRed over 192 h of irradiance. Sulfonates (DOSSO3) and other minor oxidized DOS functionalities were not susceptible to photochemical oxidation. The observed susceptibility of DOSRed to photodesulfurization, which has implications on carbon, sulfur, and mercury cycling, should be comprehensively evaluated across diverse aquatic environments of differing DOM composition.

5.
Environ Sci Technol ; 57(27): 10019-10029, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37382932

RESUMEN

Over the past several decades, agricultural sulfur (S) use has dramatically increased. Excess S in the environment can cause several biogeochemical and ecologic consequences, including methylmercury production. This study investigated agriculturally associated changes to organic S─the most dominant form of S within soils─from field-to-watershed scales. Using a novel complementary suite of analytical methods, we combined Fourier transform ion cyclotron resonance mass spectrometry, δ34S-DOS, and S X-ray absorption spectroscopy to characterize dissolved organic S (DOS) in soil porewater and surface water samples from vineyard agriculture (S addition) and forest/grassland areas (no S addition) within the Napa River watershed (California, U.S.). Vineyard soil porewater dissolved organic matter samples had two-fold higher S content compared to forest/grasslands and had unique CHOS2 chemical formulas─the latter also found in tributary and Napa River surface water. The isotopic difference between δ34S-DOS and δ34S-SO42- values provided insights into the likely dominant microbial S processes by land use/land cover (LULC), whereas the S oxidation state did not strongly differ by LULC. The results add to our understanding of the modern S cycle and point to upland agricultural areas as S sources with the potential for rapid S transformations in downgradient environments.


Asunto(s)
Agricultura , Materia Orgánica Disuelta , Suelo , Azufre/análisis , Agua
6.
Environ Sci Process Impacts ; 25(5): 912-928, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37186129

RESUMEN

Reservoirs in arid landscapes provide critical water storage and hydroelectric power but influence the transport and biogeochemical cycling of mercury (Hg). Improved management of reservoirs to mitigate the supply and uptake of bioavailable methylmercury (MeHg) in aquatic food webs will benefit from a mechanistic understanding of inorganic divalent Hg (Hg(II)) and MeHg fate within and downstream of reservoirs. Here, we quantified Hg(II), MeHg, and other pertinent biogeochemical constituents in water (filtered and associated with particles) at high temporal resolution from 2016-2020. This was done (1) at inflow and outflow locations of three successive hydroelectric reservoirs (Snake River, Idaho, Oregon) and (2) vertically and longitudinally within the first reservoir (Brownlee Reservoir). Under spring high flow, upstream inputs of particulate Hg (Hg(II) and MeHg) and filter-passing Hg(II) to Brownlee Reservoir were governed by total suspended solids and dissolved organic matter, respectively. Under redox stratified conditions in summer, net MeHg formation in the meta- and hypolimnion of Brownlee reservoir yielded elevated filter-passing and particulate MeHg concentrations, the latter exceeding 500 ng g-1 on particles. Simultaneously, the organic matter content of particulates increased longitudinally in the reservoir (from 9-29%) and temporally with stratified duration. In late summer and fall, destratification mobilized MeHg from the upgradient metalimnion and the downgradient hypolimnion of Brownlee Reservoir, respectively, resulting in downstream export of elevated filter-passing MeHg and organic-rich particles enriched in MeHg (up to 43% MeHg). We document coupled biogeochemical and hydrologic processes that yield in-reservoir MeHg accumulation and MeHg export in water and particles, which impacts MeHg uptake in aquatic food webs within and downstream of reservoirs.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Mercurio/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Compuestos de Metilmercurio/química , Agua
7.
Environ Microbiol ; 25(8): 1409-1423, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36871189

RESUMEN

Methylmercury (MeHg) production is controlled by the bioavailability of inorganic divalent mercury (Hg(II)i ) and Hg-methylation capacity of the microbial community (conferred by the hgcAB gene cluster). However, the relative importance of these factors and their interaction in the environment remain poorly understood. Here, metagenomic sequencing and a full-factorial MeHg formation experiment were conducted across a wetland sulfate gradient with different microbial communities and pore water chemistries. From this experiment, the relative importance of each factor on MeHg formation was isolated. Hg(II)i bioavailability correlated with the dissolved organic matter composition, while the microbial Hg-methylation capacity correlated with the abundance of hgcA genes. MeHg formation responded synergistically to both factors. Notably, hgcA sequences were from diverse taxonomic groups, none of which contained genes for dissimilatory sulfate reduction. This work expands our understanding of the geochemical and microbial constraints on MeHg formation in situ and provides an experimental framework for further mechanistic studies.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Microbiota , Contaminantes Químicos del Agua , Metilación , Disponibilidad Biológica , Contaminantes Químicos del Agua/análisis
8.
Environ Pollut ; 317: 120713, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36435284

RESUMEN

Surface runoff mobilizes the burned residues and ashes produced during wildfires and deposits them in surface waters, thereby deteriorating water quality. A lack of a consistent reporting protocol precludes a quantitative understanding of how and to what extent wildfire may affect the water quality of surface waters. This study aims to analyze reported pre- and post-fire water quality data to inform the data reporting and highlight research opportunities. A comparison of the pre-and post-fire water quality data from 44 studies reveals that wildfire could increase the concentration of many pollutants by two orders of magnitude. However, the concentration increase is sensitive to when the sample was taken after the wildfire, the wildfire burned area, discharge rate in the surface water bodies where samples were collected, and pollutant type. Increases in burned areas disproportionally increased total suspended solids (TSS) concentration, indicating TSS concentration is dependent on the source area. Increases in surface water flow up to 10 m3 s-1 increased TSS concentration but any further increase in flow rate decreased TSS concentration, potentially due to dilution. Nutrients and suspended solids concentrations increase within a year after the wildfire, whereas peaks for heavy metals occur after 1-2 years of wildfire, indicating a delay in the leaching of heavy metals compared to nutrients from wildfire-affected areas. The concentration of polycyclic aromatic hydrocarbons (PAHs) was greatest within a year post-fire but did not exceed the surface water quality limits. The analysis also revealed inconsistency in the existing sampling protocols and provides a guideline for a modified protocol along with highlighting new research opportunities. Overall, this study underlines the need for consistent reporting of post-fire water quality data along with environmental factors that could affect the data so that the post-fire water quality can be assessed or compared between studies.


Asunto(s)
Contaminantes Ambientales , Incendios , Contaminantes Químicos del Agua , Incendios Forestales , Calidad del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales/análisis
9.
Environ Sci Technol ; 56(19): 13751-13760, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36107858

RESUMEN

Anoxic conditions within reservoirs related to thermal stratification and oxygen depletion lead to methylmercury (MeHg) production, a key process governing the uptake of mercury in aquatic food webs. Once formed within a reservoir, the timing and magnitude of the biological uptake of MeHg and the relative importance of MeHg export in water versus biological compartments remain poorly understood. We examined the relations between the reservoir stratification state, anoxia, and the concentrations and export loads of MeHg in aqueous and biological compartments at the outflow locations of two reservoirs of the Hells Canyon Complex (Snake River, Idaho-Oregon). Results show that (1) MeHg concentrations in filter-passing water, zooplankton, suspended particles, and detritus increased in response to reservoir destratification; (2) zooplankton MeHg strongly correlated with MeHg in filter-passing water during destratification; (3) reservoir anoxia appeared to be a key control on MeHg export; and (4) biological MeHg, primarily in zooplankton, accounted for only 5% of total MeHg export from the reservoirs (the remainder being aqueous compartments). These results improve our understanding of the role of biological incorporation of MeHg and the subsequent downstream release from seasonally stratified reservoirs and demonstrate that in-reservoir physical processes strongly influence MeHg incorporation at the base of the aquatic food web.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Cadena Alimentaria , Humanos , Hipoxia , Mercurio/análisis , Compuestos de Metilmercurio/metabolismo , Oxígeno , Ríos , Agua , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 56(13): 9182-9195, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35723432

RESUMEN

Monitoring mercury (Hg) levels in biota is considered an important objective for the effectiveness evaluation of the Minamata Convention. While many studies have characterized Hg levels in organisms at multiple spatiotemporal scales, concentration analyses alone often cannot provide sufficient information on the Hg exposure sources and internal processes occurring within biota. Here, we review the decadal scientific progress of using Hg isotopes to understand internal processes that modify the speciation, transport, and fate of Hg within biota. Mercury stable isotopes have emerged as a powerful tool for assessing Hg sources and biogeochemical processes in natural environments. A better understanding of the tissue location and internal mechanisms leading to Hg isotope change is key to assessing its use for biomonitoring. We synthesize the current understanding and uncertainties of internal processes leading to Hg isotope fractionation in a variety of biota, in a sequence of better to less studied organisms (i.e., birds, marine mammals, humans, fish, plankton, and invertebrates). This review discusses the opportunities and challenges of using certain forms of biota for Hg source monitoring and the need to further elucidate the physiological mechanisms that control the accumulation, distribution, and toxicity of Hg in biota by coupling new techniques with Hg stable isotopes.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Animales , Biota , Monitoreo del Ambiente/métodos , Isótopos , Mamíferos/metabolismo , Mercurio/análisis , Isótopos de Mercurio/análisis , Contaminantes Químicos del Agua/análisis
11.
Sci Total Environ ; 838(Pt 1): 156031, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35595135

RESUMEN

Mercury (Hg) contamination has been a persistent concern in the Florida Everglades for over three decades due to elevated atmospheric deposition and the system's propensity for methylation and rapid bioaccumulation. Given declines in atmospheric Hg concentrations in the conterminous United States and efforts to mitigate nutrient release to the greater Everglades ecosystem, it was vital to assess how Hg dynamics responded on temporal and spatial scales. This study used a multimedia approach (water and biota) to examine Hg and methylmercury (MeHg) dynamics across a 76-site network within the southernmost portion of the region, Everglades National Park (ENP), from 2008 to 2018. Hg concentrations across matrices showed that air, water, and biota from the system were inextricably linked. Temporal patterns across matrices were driven primarily by hydrologic and climatic changes in the park and no evidence of a decline in atmospheric Hg deposition from 2008 to 2018 was observed, unlike other regions of the United States. In the Shark River Slough (SRS), excess dissolved organic carbon and sulfate were also consistently delivered from upgradient canals and showed no evidence of decline over the study period. Within the SRS a strong positive correlation was observed between MeHg concentrations in surface water and resident fish. Within distinct geographic regions of ENP (SRS, Marsh, Coastal), the geochemical controls on MeHg dynamics differed and highlighted regions susceptible to higher MeHg bioaccumulation, particularly in the SRS and Coastal regions. This study demonstrates the strong influence that dissolved organic carbon and sulfate loads have on spatial and temporal distributions of MeHg across ENP. Importantly, improved water quality and flow rates are two key restoration targets of the nearly 30-year Everglades restoration program, which if achieved, this study suggests would lead to reduced MeHg production and exposure.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Bioacumulación , Ecosistema , Monitoreo del Ambiente , Mercurio/análisis , Parques Recreativos , Sulfatos , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 806(Pt 1): 150477, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563904

RESUMEN

Natural organic matter corona (NOM corona) is an interfacial area between nanomaterials (NMs) and the surrounding environment, which gives rise to NMs' unique surface identity. While the importance of the formation of natural organic matter (NOM) corona on engineered nanomaterials (NMs) to NM behavior, fate, and toxicity has been well-established, the understanding of how NOM molecular properties affect NOM corona composition remains elusive due to the complexity and heterogeneity of NOM. This is further complicated by the variation of NOMs from different origins. Here we use eight NOM isolates of different molecular composition and ultrahigh resolution Fourier-transform ion cyclotron resonance-mass spectrometry (ESI-FT-ICR-MS) to determine the molecular composition of platinum NM-NOM corona as a function of NOM composition and NM surface coating. We observed that the composition of PtNM-NOM corona varied with the composition of the original NOM. The percentage of NOM formulas that formed PVP-PtNM-NOM corona was higher than those formed citrate-PtNM-NOM corona, due to increased sorption of NOM formulas, in particular condensed hydrocarbons, to the PVP coating. The relative abundance of heteroatom formulas (CHON, CHOS, and CHOP) was higher in the PVP-PtNM-NOM corona than in citrate-PtNM-corona which was in turn higher than those in the original NOM isolate, indicating preferential partitioning of heteroatom-rich molecules to NM surfaces. The relative abundance of CHO, CHON, CHOS, CHOP and condensed hydrocarbons in PtNM-NOM corona increased with their increase in NOM isolates. Furthermore, PtNM-NOM corona is rich with compounds with high molecular weight. This study demonstrates that the composition and properties of PtNM-NOM corona depend on NOM molecular properties and PtNM surface coating. The results here provide evidence of molecular interactions between NOM and NMs, which are critical to understanding NM colloidal properties (e.g., surface charge and stability), interaction forces (e.g., van der Waals and hydrophobic), environmental behaviors (e.g., aggregation, dissolution, sulfidation, etc.), and biological effects (e.g., uptake, bioaccumulation, and toxicity).


Asunto(s)
Nanoestructuras , Platino (Metal) , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas
14.
Environ Sci Technol ; 55(20): 13942-13952, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34596385

RESUMEN

A prerequisite for environmental and toxicological applications of mercury (Hg) stable isotopes in wildlife and humans is quantifying the isotopic fractionation of biological reactions. Here, we measured stable Hg isotope values of relevant tissues of giant petrels (Macronectes spp.). Isotopic data were interpreted with published HR-XANES spectroscopic data that document a stepwise transformation of methylmercury (MeHg) to Hg-tetraselenolate (Hg(Sec)4) and mercury selenide (HgSe) (Sec = selenocysteine). By mathematical inversion of isotopic and spectroscopic data, identical δ202Hg values for MeHg (2.69 ± 0.04‰), Hg(Sec)4 (-1.37 ± 0.06‰), and HgSe (0.18 ± 0.02‰) were determined in 23 tissues of eight birds from the Kerguelen Islands and Adélie Land (Antarctica). Isotopic differences in δ202Hg between MeHg and Hg(Sec)4 (-4.1 ± 0.1‰) reflect mass-dependent fractionation from a kinetic isotope effect due to the MeHg → Hg(Sec)4 demethylation reaction. Surprisingly, Hg(Sec)4 and HgSe differed isotopically in δ202Hg (+1.6 ± 0.1‰) and mass-independent anomalies (i.e., changes in Δ199Hg of ≤0.3‰), consistent with equilibrium isotope effects of mass-dependent and nuclear volume fractionation from Hg(Sec)4 → HgSe biomineralization. The invariance of species-specific δ202Hg values across tissues and individual birds reflects the kinetic lability of Hg-ligand bonds and tissue-specific redistribution of MeHg and inorganic Hg, likely as Hg(Sec)4. These observations provide fundamental information necessary to improve the interpretation of stable Hg isotope data and provoke a revisitation of processes governing isotopic fractionation in biota and toxicological risk assessment in wildlife.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Animales , Biomineralización , Aves , Fraccionamiento Químico , Desmetilación , Monitoreo del Ambiente , Humanos , Mercurio/análisis , Isótopos de Mercurio/análisis , Contaminantes Químicos del Agua/análisis
15.
Front Microbiol ; 12: 741523, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675906

RESUMEN

Climate change dramatically impacts Arctic and subarctic regions, inducing shifts in wetland nutrient regimes as a consequence of thawing permafrost. Altered hydrological regimes may drive changes in the dynamics of microbial mercury (Hg) methylation and bioavailability. Important knowledge gaps remain on the contribution of specific microbial groups to methylmercury (MeHg) production in wetlands of various trophic status. Here, we measured aqueous chemistry, potential methylation rates (k meth ), volatile fatty acid (VFA) dynamics in peat-soil incubations, and genetic potential for Hg methylation across a groundwater-driven nutrient gradient in an interior Alaskan fen. We tested the hypotheses that (1) nutrient inputs will result in increased methylation potentials, and (2) syntrophic interactions contribute to methylation in subarctic wetlands. We observed that concentrations of nutrients, total Hg, and MeHg, abundance of hgcA genes, and rates of methylation in peat incubations (k meth ) were highest near the groundwater input and declined downgradient. hgcA sequences near the input were closely related to those from sulfate-reducing bacteria (SRB), methanogens, and syntrophs. Hg methylation in peat incubations collected near the input source (FPF2) were impacted by the addition of sulfate and some metabolic inhibitors while those down-gradient (FPF5) were not. Sulfate amendment to FPF2 incubations had higher k meth relative to unamended controls despite no effect on k meth from addition of the sulfate reduction inhibitor molybdate. The addition of the methanogenic inhibitor BES (25 mM) led to the accumulation of VFAs, but unlike molybdate, it did not affect Hg methylation rates. Rather, the concurrent additions of BES and molybdate significantly decreased k meth , suggesting a role for interactions between SRB and methanogens in Hg methylation. The reduction in k meth with combined addition of BES and molybdate, and accumulation of VFA in peat incubations containing BES, and a high abundance of syntroph-related hgcA sequences in peat metagenomes provide evidence for MeHg production by microorganisms growing in syntrophy. Collectively the results suggest that wetland nutrient regimes influence the activity of Hg methylating microorganisms and, consequently, Hg methylation rates. Our results provide key information about microbial Hg methylation and methylating communities under nutrient conditions that are expected to become more common as permafrost soils thaw.

16.
Environ Sci Technol ; 55(4): 2452-2461, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33529523

RESUMEN

The bioavailability of dissolved Pt(IV) and polyvinylpyrrolidone-coated platinum nanoparticles (PtNPs) of five different nominal hydrodynamic diameters (20, 30, 50, 75, and 95 nm) was characterized in laboratory experiments using the model freshwater snail Lymnaea stagnalis. Dissolved Pt(IV) and all nanoparticle sizes were bioavailable to L. stagnalis. Platinum bioavailability, inferred from conditional uptake rate constants, was greater for nanoparticulate than dissolved forms and increased with increasing nanoparticle hydrodynamic diameter. The effect of natural organic matter (NOM) composition on PtNP bioavailability was evaluated using six NOM samples at two nanoparticle sizes (20 and 95 nm). NOM suppressed the bioavailability of 95 nm PtNPs in all cases, and DOM reduced sulfur content exhibited a positive correlation with 95 nm PtNP bioavailability. The bioavailability of 20 nm PtNPs was only suppressed by NOM with a low reduced sulfur content. The physiological elimination of Pt accumulated after dissolved Pt(IV) exposure was slow and constant. In contrast, the elimination of Pt accumulated after PtNP exposures exhibited a triphasic pattern likely involving in vivo PtNP dissolution. This work highlights the importance of PtNP size and interfacial interactions with NOM on Pt bioavailability and suggests that in vivo PtNP transformations could yield unexpectedly higher adverse effects to organisms than dissolved exposure alone.


Asunto(s)
Nanopartículas del Metal , Platino (Metal) , Animales , Disponibilidad Biológica , Agua Dulce , Povidona
17.
Environ Sci Technol ; 55(3): 1527-1534, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33476127

RESUMEN

Toxicity of methylmercury (MeHg) to wildlife and humans results from its binding to cysteine residues of proteins, forming MeHg-cysteinate (MeHgCys) complexes that hinder biological functions. MeHgCys complexes can be detoxified in vivo, yet how this occurs is unknown. We report that MeHgCys complexes are transformed into selenocysteinate [Hg(Sec)4] complexes in multiple animals from two phyla (a waterbird, freshwater fish, and earthworms) sampled in different geographical areas and contaminated by different Hg sources. In addition, high energy-resolution X-ray absorption spectroscopy (HR-XANES) and chromatography-inductively coupled plasma mass spectrometry of the waterbird liver support the binding of Hg(Sec)4 to selenoprotein P and biomineralization of Hg(Sec)4 to chemically inert nanoparticulate mercury selenide (HgSe). The results provide a foundation for understanding mercury detoxification in higher organisms and suggest that the identified MeHgCys to Hg(Sec)4 demethylation pathway is common in nature.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oligoquetos , Animales , Aves , Desmetilación , Humanos
18.
Environ Sci Technol ; 54(24): 16249-16259, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33211479

RESUMEN

Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) has been increasingly employed to characterize dissolved organic matter (DOM) across a range of aquatic environments highlighting the role of DOM in global carbon cycling. DOM analysis commonly utilizes electrospray ionization (ESI), while some have implemented other techniques, including dopant-assisted atmospheric pressure photoionization (APPI). We compared various extracted DOM compositions analyzed by negative ESI and positive APPI doped with both toluene and tetrahydrofuran (THF), including a fragmentation study of THF-doped riverine DOM using infrared multiple photon dissociation (IRMPD). DOM compositions followed the same trends in ESI and dopant-assisted APPI with the latter presenting saturated, less oxygenated, and more N-containing compounds than ESI. Between the APPI dopants, THF-doping yielded spectra with more aliphatic-like and N-containing compounds than toluene-doping. We further demonstrate how fragmentation of THF-doped DOM in APPI resolved subtle differences between riverine DOM that was absent from ESI. In both ionization methods, we describe a linear relationship between atomic and formulaic N-compositions from a range of DOM extracts. This study highlights that THF-doped APPI is useful for uncovering low-intensity aliphatic and peptide-like components in autochthonous DOM, which could aid environmental assessments of DOM across biolability gradients.


Asunto(s)
Presión Atmosférica , Ciclotrones , Análisis de Fourier , Espectrometría de Masas , Espectrometría de Masa por Ionización de Electrospray
19.
Environ Sci Technol ; 54(15): 9305-9314, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32667810

RESUMEN

The Hells Canyon Complex (HCC) along the Snake River (Idaho-Oregon border, U.S.A.) encompasses three successive reservoirs that seasonally stratify, creating anoxic conditions in the hypolimnion that promote methylmercury (MeHg) production. This study quantified seasonal dynamics and interannual variability in mercury concentrations (inorganic divalent mercury (IHg) and MeHg) and loads at four reservoir inflow and outflow locations through the HCC (2014-2017). We observed (1) that the HCC is a net sink for both IHg and MeHg, (2) interannual variability in IHg and MeHg loads largely reflecting streamflow conditions, and (3) seasonal variability in particulate IHg loading at the inflow (greatest from February to April) and MeHg export from the outflow (greatest from September to December) of the HCC. Seasonal export of MeHg was evidenced by increases in monthly mean concentrations of unfiltered MeHg (approximately 2-fold) and the percentage of total mercury (THg) as MeHg (≥4-fold) coincident with reservoir destratification. Despite evidence of seasonal export of MeHg from the HCC, annual loads indicate a 42% decrease in unfiltered MeHg from HCC inflow to outflow. Results from this study improve the understanding of seasonal variability in mercury transport through and transformation within a reservoir complex.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Humanos , Idaho , Mercurio/análisis , Oregon , Estaciones del Año , Contaminantes Químicos del Agua/análisis
20.
Environ Sci Technol ; 53(11): 6203-6213, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31090422

RESUMEN

The transformations of aqueous inorganic divalent mercury (Hg(II)i) to volatile dissolved gaseous mercury (Hg(0)(aq)) and toxic methylmercury (MeHg) govern mercury bioavailability and fate in northern ecosystems. This study quantified concentrations of aqueous mercury species (Hg(II)i, Hg(0)(aq), MeHg) and relevant geochemical constituents in pore waters of eight Alaskan wetlands that differ in trophic status (i.e., bog-to-fen gradient) to gain insight on processes controlling dark Hg(II)i reduction and Hg(II)i methylation. Regardless of wetland trophic status, positive correlations were observed between pore water Hg(II)i and dissolved organic carbon (DOC) concentrations. The concentration ratio of Hg(0)(aq) to Hg(II)i exhibited an inverse relationship to Hg(II)i concentration. A ubiquitous pathway for Hg(0)(aq) formation was not identified based on geochemical data, but we surmise that dissolved organic matter (DOM) influences mercury retention in wetland pore waters by complexing Hg(II)i and decreasing the concentration of volatile Hg(0)(aq) relative to Hg(II)i. There was no evidence of Hg(0)(aq) abundance directly limiting mercury methylation. The concentration of MeHg relative to Hg(II)i was greatest in wetlands of intermediate trophic status, and geochemical data suggest mercury methylation pathways vary between wetlands. Our insights on geochemical factors influencing aqueous mercury speciation should be considered in context of the long-term fate of mercury in northern wetlands.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Ecosistema , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...