Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
J Pathol ; 260(5): 495-497, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37580852

RESUMEN

The 2023 Annual Review Issue of The Journal of Pathology, Recent Advances in Pathology, contains 12 invited reviews on topics of current interest in pathology. This year, our subjects include immuno-oncology and computational pathology approaches for diagnostic and research applications in human disease. Reviews on the tissue microenvironment include the effects of apoptotic cell-derived exosomes, how understanding the tumour microenvironment predicts prognosis, and the growing appreciation of the diverse functions of fibroblast subtypes in health and disease. We also include up-to-date reviews of modern aspects of the molecular basis of malignancies, and our final review covers new knowledge of vascular and lymphatic regeneration in cardiac disease. All of the reviews contained in this issue are written by expert groups of authors selected to discuss the recent progress in their particular fields and all articles are freely available online (https://pathsocjournals.onlinelibrary.wiley.com/journal/10969896). © 2023 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias , Humanos , Neoplasias/patología , Pronóstico , Microambiente Tumoral , Reino Unido , Literatura de Revisión como Asunto
2.
J Pathol ; 257(4): 379-382, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635736

RESUMEN

The 2022 Annual Review Issue of The Journal of Pathology, Recent Advances in Pathology, contains 15 invited reviews on research areas of growing importance in pathology. This year, the articles include those that focus on digital pathology, employing modern imaging techniques and software to enable improved diagnostic and research applications to study human diseases. This subject area includes the ability to identify specific genetic alterations through the morphological changes they induce, as well as integrating digital and computational pathology with 'omics technologies. Other reviews in this issue include an updated evaluation of mutational patterns (mutation signatures) in cancer, the applications of lineage tracing in human tissues, and single cell sequencing technologies to uncover tumour evolution and tumour heterogeneity. The tissue microenvironment is covered in reviews specifically dealing with proteolytic control of epidermal differentiation, cancer-associated fibroblasts, field cancerisation, and host factors that determine tumour immunity. All of the reviews contained in this issue are the work of invited experts selected to discuss the considerable recent progress in their respective fields and are freely available online (https://onlinelibrary.wiley.com/journal/10969896). © 2022 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Programas Informáticos , Microambiente Tumoral/genética , Reino Unido
3.
J Pathol ; 254(4): 303-306, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34097314

RESUMEN

The 2021 Annual Review Issue of The Journal of Pathology contains 14 invited reviews on current research areas of particular importance in pathology. The subjects included here reflect the broad range of interests covered by the journal, including both basic and applied research fields but always with the aim of improving our understanding of human disease. This year, our reviews encompass the huge impact of the COVID-19 pandemic, the development and application of biomarkers for immune checkpoint inhibitors, recent advances in multiplexing antigen/nucleic acid detection in situ, the use of genomics to aid drug discovery, organoid methodologies in research, the microbiome in cancer, the role of macrophage-stroma interactions in fibrosis, and TGF-ß as a driver of fibrosis in multiple pathologies. Other reviews revisit the p53 field and its lack of clinical impact to date, dissect the genetics of mitochondrial diseases, summarise the cells of origin and genetics of sarcomagenesis, provide new data on the role of TRIM28 in tumour predisposition, review our current understanding of cancer stem cell niches, and the function and regulation of p63. The reviews are authored by experts in their field from academia and industry, and provide comprehensive updates of the chosen areas, in which there has been considerable recent progress. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
COVID-19/genética , COVID-19/virología , Neoplasias/patología , SARS-CoV-2/patogenicidad , COVID-19/patología , Genómica/métodos , Humanos , Neoplasias/complicaciones , Neoplasias/genética , Organoides/patología , Reino Unido
4.
J Pathol ; 250(5): 475-479, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32346919

RESUMEN

This year's Annual Review Issue of The Journal of Pathology contains 18 invited reviews on current research areas in pathology. The subject areas reflect the broad range of topics covered by the journal and this year encompass the development and application of software in digital histopathology, implementation of biomarkers in pathology practice; genetics and epigenetics, and stromal influences in disease. The reviews are authored by experts in their field and provide comprehensive updates in the chosen areas, in which there has been considerable recent progress in our understanding of disease. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Biomarcadores de Tumor , Inflamación/patología , Neoplasias/patología , Microambiente Tumoral/genética , Animales , Epigénesis Genética , Humanos , Neoplasias/genética , Microambiente Tumoral/inmunología , Reino Unido
5.
J Pathol ; 247(5): 535-538, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30734304

RESUMEN

In this Annual Review Issue of The Journal of Pathology, we present 15 invited reviews on topical aspects of pathology, ranging from the impacts of the microbiome in human disease through mechanisms of cell death and autophagy to recent advances in immunity and the uses of genomics for understanding, classifying and treating human cancers. Each of the reviews is authored by experts in their fields and our intention is to provide comprehensive updates in specific areas of pathology in which there has been considerable recent progress. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

6.
Inflamm Bowel Dis ; 24(1): 136-148, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29272487

RESUMEN

Background: DUOX2 and DUOXA2 form the predominant H2O2-producing system in human colorectal mucosa. Inflammation, hypoxia, and 5-aminosalicylic acid increase H2O2 production, supporting innate defense and mucosal healing. Thiocyanate reacts with H2O2 in the presence of lactoperoxidase (LPO) to form hypothiocyanate (OSCN-), which acts as a biocide and H2O2 scavenging system to reduce damage during inflammation. We aimed to discover the organization of Duox2, Duoxa2, and Lpo expression in colonic crypts of Lieberkühn (intestinal glands) of mice and how distributions respond to dextran sodium sulfate (DSS)-induced colitis and subsequent mucosal regeneration. Methods: We studied tissue from DSS-exposed mice and human biopsies using in situ hybridization, reverse transcription quantitative polymerase chain reaction, and cDNA microarray analysis. Results: Duox2 mRNA expression was mostly in the upper crypt quintile while Duoxa2 was more apically focused. Most Lpo mRNA was in the basal quintile, where stem cells reside. Duox2 and Duoxa2 mRNA were increased during the induction and resolution of DSS colitis, while Lpo expression did not increase during the acute phase. Patterns of Lpo expression differed from Duox2 in normal, inflamed, and regenerative mouse crypts (P < 0.001). We found no evidence of LPO expression in the human gut. Conclusions: The spatial and temporal separation of H2O2-consuming and -producing enzymes enables a thiocyanate- H2O2 "scavenging" system in murine intestinal crypts to protect the stem/proliferative zones from DNA damage, while still supporting higher H2O2 concentrations apically to aid mucosal healing. The absence of LPO expression in the human gut suggests an alternative mechanism or less protection from DNA damage during H2O2-driven mucosal healing.


Asunto(s)
Colitis/metabolismo , Oxidasas Duales/metabolismo , Peróxido de Hidrógeno/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Lactoperoxidasa/metabolismo , Cicatrización de Heridas , Animales , Colitis/inducido químicamente , Colitis/patología , Oxidasas Duales/genética , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/metabolismo , Humanos , Inflamación/patología , Mucosa Intestinal/patología , Lactoperoxidasa/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Especificidad de la Especie
7.
Oncotarget ; 8(48): 84258-84275, 2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29137421

RESUMEN

The estrogen receptor ERß is the predominant ER subtype expressed in normal well-differentiated colonic epithelium. However, ERß expression is lost under the hypoxic microenvironment as colorectal cancer (CRC) malignancy progresses. This raises questions about the role of signalling through other estrogen receptors such as ERα or G-protein coupled estrogen receptor (GPER, GPR30) by the estrogen 17ß-estradiol (E2) under hypoxic conditions after ERß is lost in CRC progression. We tested the hypothesis that E2 or hypoxia can act via GPER to contribute to the altered phenotype of CRC cells. GPER expression was found to be up-regulated by hypoxia and E2 in a panel of CRC cell lines. The E2-modulated gene, Ataxia telangiectasia mutated (ATM), was repressed in hypoxia via GPER signalling. E2 treatment enhanced hypoxia-induced expression of HIF1-α and VEGFA, but repressed HIF1-α and VEGFA expression under normoxic conditions. The expression and repression of VEGFA by E2 were mediated by a GPER-dependent mechanism. E2 treatment potentiated hypoxia-induced CRC cell migration and proliferation, whereas in normoxia, cell migration and proliferation were suppressed by E2 treatment. The effects of E2 on these cellular responses in normoxia and hypoxia were mediated by GPER. In a cohort of 566 CRC patient tumor samples, GPER expression significantly associated with poor survival in CRC Stages 3-4 females but not in the stage-matched male population. Our findings support a potentially pro-tumorigenic role for E2 in ERß-negative CRC under hypoxic conditions transduced via GPER and suggest a novel route of therapeutic intervention through GPER antagonism.

8.
J Pathol ; 238(2): 359-67, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26387837

RESUMEN

Animal models are essential research tools in modern biomedical research, but there are concerns about their lack of reproducibility and the failure of animal data to translate into advances in human medical therapy. A major factor in improving experimental reproducibility is thorough communication of research methodologies. The recently published ARRIVE guidelines outline basic information that should be provided when reporting animal studies. This paper builds on ARRIVE by providing the minimum information needed in reports to allow proper assessment of pathology data gathered from animal tissues. This guidance covers aspects of experimental design, technical procedures, data gathering, analysis, and presentation that are potential sources of variation when creating morphological, immunohistochemical (IHC) or in situ hybridization (ISH) datasets. This reporting framework will maximize the likelihood that pathology data derived from animal experiments can be reproduced by ensuring that sufficient information is available to allow for replication of the methods and facilitate inter-study comparison by identifying potential interpretative confounders.


Asunto(s)
Modelos Animales , Patología/métodos , Guías de Práctica Clínica como Asunto , Experimentación Animal , Animales , Humanos , Difusión de la Información , Publicaciones , Proyectos de Investigación , Investigación Biomédica Traslacional
9.
Gut ; 65(7): 1151-64, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26033966

RESUMEN

OBJECTIVE: Colorectal cancer remains the fourth most common cause of cancer-related mortality worldwide. Here we investigate the role of nuclear factor-κB (NF-κB) co-factor B-cell CLL/lymphoma 3 (BCL-3) in promoting colorectal tumour cell survival. DESIGN: Immunohistochemistry was carried out on 47 tumour samples and normal tissue from resection margins. The role of BCL-3/NF-κB complexes on cell growth was studied in vivo and in vitro using an siRNA approach and exogenous BCL-3 expression in colorectal adenoma and carcinoma cells. The question whether BCL-3 activated the AKT/protein kinase B (PKB) pathway in colorectal tumour cells was addressed by western blotting and confocal microscopy, and the ability of 5-aminosalicylic acid (5-ASA) to suppress BCL-3 expression was also investigated. RESULTS: We report increased BCL-3 expression in human colorectal cancers and demonstrate that BCL-3 expression promotes tumour cell survival in vitro and tumour growth in mouse xenografts in vivo, dependent on interaction with NF-κB p50 or p52 homodimers. We show that BCL-3 promotes cell survival under conditions relevant to the tumour microenvironment, protecting both colorectal adenoma and carcinoma cells from apoptosis via activation of the AKT survival pathway: AKT activation is mediated via both PI3K and mammalian target of rapamycin (mTOR) pathways, leading to phosphorylation of downstream targets GSK-3ß and FoxO1/3a. Treatment with 5-ASA suppressed BCL-3 expression in colorectal cancer cells. CONCLUSIONS: Our study helps to unravel the mechanism by which BCL-3 is linked to poor prognosis in colorectal cancer; we suggest that targeting BCL-3 activity represents an exciting therapeutic opportunity potentially increasing the sensitivity of tumour cells to conventional therapy.


Asunto(s)
Neoplasias Colorrectales/química , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas/análisis , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Factores de Transcripción/análisis , Factores de Transcripción/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Apoptosis , Proteínas del Linfoma 3 de Células B , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Colon/química , Neoplasias Colorrectales/patología , Células HCT116 , Humanos , Mesalamina/farmacología , Ratones , Ratones Desnudos , FN-kappa B/análisis , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , ARN Interferente Pequeño/farmacología , Recto/química , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/genética , Carga Tumoral
10.
EMBO Mol Med ; 7(5): 547-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25770819

RESUMEN

The mechanism by which trauma initiates healing remains unclear. Precise understanding of these events may define interventions for accelerating healing that could be translated to the clinical arena. We previously reported that addition of low-dose recombinant human TNF (rhTNF) at the fracture site augmented fracture repair in a murine tibial fracture model. Here, we show that local rhTNF treatment is only effective when administered within 24 h of injury, when neutrophils are the major inflammatory cell infiltrate. Systemic administration of anti-TNF impaired fracture healing. Addition of rhTNF enhanced neutrophil recruitment and promoted recruitment of monocytes through CCL2 production. Conversely, depletion of neutrophils or inhibition of the chemokine receptor CCR2 resulted in significantly impaired fracture healing. Fragility, or osteoporotic, fractures represent a major medical problem as they are associated with permanent disability and premature death. Using a murine model of fragility fractures, we found that local rhTNF treatment improved fracture healing during the early phase of repair. If translated clinically, this promotion of fracture healing would reduce the morbidity and mortality associated with delayed patient mobilization.


Asunto(s)
Huesos/efectos de los fármacos , Huesos/fisiología , Curación de Fractura/efectos de los fármacos , Fracturas Óseas/patología , Inmunidad Innata/efectos de los fármacos , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Huesos/inmunología , Quimiocina CCL2/metabolismo , Modelos Animales de Enfermedad , Curación de Fractura/inmunología , Fracturas Óseas/tratamiento farmacológico , Humanos , Ratones , Monocitos/inmunología , Neutrófilos/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factor de Necrosis Tumoral alfa/genética
11.
J Cell Mol Med ; 19(2): 463-73, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25389045

RESUMEN

To assess effects of epidermal growth factor (EGF) and pegylated granulocyte colony-stimulating factor (P-GCSF; pegfilgrastim) administration on the cellular origin of renal tubular epithelium regenerating after acute kidney injury initiated by mercuric chloride (HgCl2 ). Female mice were irradiated and male whole bone marrow (BM) was transplanted into them. Six weeks later recipient mice were assigned to one of eight groups: control, P-GCSF+, EGF+, P-GCSF+EGF+, HgCl2 , HgCl2 +P-GCSF+, HgCl2 +EGF+ and HgCl2 +P-GCSF+EGF+. Following HgCl2 , injection tubular injury scores increased and serum urea nitrogen levels reached uraemia after 3 days, but EGF-treated groups were resistant to this acute kidney injury. A four-in-one analytical technique for identification of cellular origin, tubular phenotype, basement membrane and S-phase status revealed that BM contributed 1% of proximal tubular epithelium in undamaged kidneys and 3% after HgCl2 damage, with no effects of exogenous EGF or P-GCSF. Only 0.5% proximal tubular cells were seen in S-phase in the undamaged group kidneys; this increased to 7-8% after HgCl2 damage and to 15% after addition of EGF. Most of the regenerating tubular epithelium originated from the indigenous pool. BM contributed up to 6.6% of the proximal tubular cells in S-phase after HgCl2 damage, but only to 3.3% after additional EGF. EGF administration attenuated tubular necrosis following HgCl2 damage, and the major cause of this protective effect was division of indigenous cells, whereas BM-derived cells were less responsive. P-GCSF did not influence damage or regeneration.


Asunto(s)
Células de la Médula Ósea/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Necrosis de la Corteza Renal/inducido químicamente , Necrosis de la Corteza Renal/metabolismo , Cloruro de Mercurio/efectos adversos , Regeneración/fisiología , Animales , Femenino , Humanos , Túbulos Renales/metabolismo , Masculino , Ratones
12.
Nat Med ; 21(1): 62-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25419707

RESUMEN

Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.


Asunto(s)
Carcinogénesis/genética , Neoplasias Colorrectales/genética , Péptidos y Proteínas de Señalización Intercelular/biosíntesis , Nicho de Células Madre/genética , Animales , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Mutación , Receptores Acoplados a Proteínas G/genética
13.
Histopathology ; 66(5): 639-49, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24898159

RESUMEN

AIMS: Activating point mutations and protein overexpression of fibroblast growth factor receptors (FGFRs), especially FGFR3, are frequent events in bladder cancer. Little is known about gene amplifications, therefore we characterized amplification of FGFR1-3 by fluorescence in-situ hybridization (FISH). METHODS AND RESULTS: Tumours of 153 patients (n = 65 pTa low-grade, n = 15 pTa high-grade, n = 37 pT1, n = 20 pT2, n = 10 pT3, n = 6 pT4) were analysed by FISH for FGFR1-3 copy numbers and screened for FGFR3 mutations and immunohistochemical protein expression. Amplifications of FGFR1 were found in 1.6% (two of 122), FGFR2 in 0.8% (one of 121) and FGFR3 in 3.4% (five of 145). All amplifications were high-level amplifications, not overlapping with polysomy. Amplifications were found in papillary/papillary-invasive tumour parts, and predominantly in tumours with enhanced Ki67 index (>10%), aberrant CK20 expression, and low p53 expression. All FGFR3-amplified samples showed concomitant FGFR3 mutations and FGFR3 protein overexpression. FGFR amplifications were not associated significantly with gender, age, grade or stage in statistical analyses. CONCLUSIONS: FGFR amplifications are rare events in bladder cancer, with FGFR3 amplification being the most prevalent (3.4% of cases). Concomitant FGFR3 mutations and protein overexpression indicate that FGFR3-mediated signalling in these tumours would probably be highly active. This patient subgroup may be particularly suited to FGFR-targeted pharmacotherapy.


Asunto(s)
Amplificación de Genes/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Neoplasias de la Vejiga Urinaria/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Hibridación Fluorescente in Situ/métodos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación/genética , Análisis de Matrices Tisulares , Adulto Joven
14.
Clin Sci (Lond) ; 127(5): 341-50, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24641356

RESUMEN

Intestinal fibrosis with stricture formation is a complication of CD (Crohn's disease) that may mandate surgical resection. Accurate biomarkers that reflect the relative contribution of fibrosis to an individual stricture are an unmet need in managing patients with CD. The miRNA-29 (miR-29) family has been implicated in cardiac, hepatic and pulmonary fibrosis. In the present study, we investigated the expression of miR-29a, miR-29b and miR-29c in mucosa overlying a stricture in CD patients (SCD) paired with mucosa from non-strictured areas (NSCD). There was significant down-regulation of the miR-29 family in mucosa overlying SCD compared with mucosa overlying NSCD. miR-29b showed the largest fold-decrease and was selected for functional analysis. Overexpression of miR-29b in CD fibroblasts led to a down-regulation of collagen I and III transcripts and collagen III protein, but did not alter MMP (matrix metalloproteinase)-3, MMP-12 and TIMP (tissue inhibitor of metalloproteinase)-1 production. TGF (transforming growth factor)-ß1 up-regulated collagen I and III transcripts and collagen III protein as a consequence of the down-regulation of miR-29b, and TGF-ß1-induced collagen expression was reversed by exogenous overexpression of miR-29b. Furthermore, serum levels of miR-29 were lower in patients with stricturing disease compared with those without. These findings implicate the miR-29 family in the pathogenesis of intestinal fibrosis in CD and provide impetus for the further evaluation of the miR-29 family as biomarkers.


Asunto(s)
Colágeno Tipo III/biosíntesis , Colágeno Tipo I/biosíntesis , Enfermedad de Crohn/patología , MicroARNs/biosíntesis , Adolescente , Adulto , Anciano , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Constricción Patológica/metabolismo , Enfermedad de Crohn/genética , Regulación hacia Abajo , Fibrosis , Humanos , Mucosa Intestinal/metabolismo , MicroARNs/metabolismo , Persona de Mediana Edad , Factor de Crecimiento Transformador beta1/farmacología , Regulación hacia Arriba
15.
Gut ; 63(12): 1854-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24550372

RESUMEN

OBJECTIVE: Barrett's oesophagus shows appearances described as 'intestinal metaplasia', in structures called 'crypts' but do not typically display crypt architecture. Here, we investigate their relationship to gastric glands. METHODS: Cell proliferation and migration within Barrett's glands was assessed by Ki67 and iododeoxyuridine (IdU) labelling. Expression of mucin core proteins (MUC), trefoil family factor (TFF) peptides and LGR5 mRNA was determined by immunohistochemistry or by in situ hybridisation, and clonality was elucidated using mitochondrial DNA (mtDNA) mutations combined with mucin histochemistry. RESULTS: Proliferation predominantly occurs in the middle of Barrett's glands, diminishing towards the surface and the base: IdU dynamics demonstrate bidirectional migration, similar to gastric glands. Distribution of MUC5AC, TFF1, MUC6 and TFF2 in Barrett's mirrors pyloric glands and is preserved in Barrett's dysplasia. MUC2-positive goblet cells are localised above the neck in Barrett's glands, and TFF3 is concentrated in the same region. LGR5 mRNA is detected in the middle of Barrett's glands suggesting a stem cell niche in this locale, similar to that in the gastric pylorus, and distinct from gastric intestinal metaplasia. Gastric and intestinal cell lineages within Barrett's glands are clonal, indicating derivation from a single stem cell. CONCLUSIONS: Barrett's shows the proliferative and stem cell architecture, and pattern of gene expression of pyloric gastric glands, maintained by stem cells showing gastric and intestinal differentiation: neutral drift may suggest that intestinal differentiation advances with time, a concept critical for the understanding of the origin and development of Barrett's oesophagus.


Asunto(s)
Esófago de Barrett , Esófago , Mucina 5AC/metabolismo , Péptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/fisiología , Esófago de Barrett/metabolismo , Esófago de Barrett/patología , Biomarcadores de Tumor/metabolismo , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Esófago/metabolismo , Esófago/patología , Mucosa Gástrica/metabolismo , Perfilación de la Expresión Génica , Células Caliciformes/metabolismo , Humanos , Idoxuridina , Inmunohistoquímica , Antígeno Ki-67/inmunología , Inhibidores de la Síntesis del Ácido Nucleico , Factor Trefoil-2 , Factor Trefoil-3
16.
Inflamm Bowel Dis ; 20(3): 514-24, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24492313

RESUMEN

BACKGROUND: NADPH oxidase-derived reactive oxygen species, such as H2O2, are part of the intestinal innate immune system but may drive carcinogenesis through DNA damage. We sought to identify the predominant enzyme system capable of producing H2O2 in active ulcerative colitis and assess whether it is affected by 5-aminosalicylic acid (5-ASA). METHODS: We studied human mucosal biopsies by expression arrays, quantitative real-time polymerase chain reaction for NADPH oxidase family members, in situ hybridization (DUOX2 and DUOXA2) and immunofluorescence for DUOX, 8-OHdG (DNA damage), and γH2AX (DNA damage response) and sought effects of 5-ASA on ex vivo cultured biopsies and cultured rectal cancer cells. RESULTS: DUOX2 with maturation partner DUOXA2 forms the predominant system for H2O2 production in human colon and is upregulated in active colitis. DUOX2 in situ is exclusively epithelial, varies between and within individual crypts, and increases near inflammation. 8-OHdG and γH2AX were observed in damaged crypt epithelium. 5-ASA upregulated DUOX2 and DUOXA2 levels in the setting of active versus quiescent disease and altered DUOX2 expression in cultured biopsies. Ingenuity pathway analysis confirmed that inflammation status and 5-ASA increase expression of DUOX2 and DUOXA2. An epithelial cell model confirmed that cultured cancer cells expressed DUOX protein and produced H2O2 in response to hypoxia and 5-ASA exposure. CONCLUSIONS: Both DUOX2 and DUOXA2 expression are involved specifically in inflammation and are regulated on a crypt-by-crypt basis in ulcerative colitis tissues. Synergy between inflammation, hypoxia, and 5-ASA to increase H2O2 production could explain how 5-ASA supports innate defense, although potentially increasing the burden of DNA damage.


Asunto(s)
Colitis Ulcerosa/patología , Neoplasias del Colon/patología , Peróxido de Hidrógeno/metabolismo , Proteínas de la Membrana/metabolismo , Mesalamina/farmacología , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Adenoma/tratamiento farmacológico , Adenoma/metabolismo , Adenoma/patología , Antiinflamatorios no Esteroideos/farmacología , Western Blotting , Células Cultivadas , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Oxidasas Duales , Técnica del Anticuerpo Fluorescente , Humanos , Hipoxia/metabolismo , Hipoxia/patología , Hibridación in Situ , Inflamación/metabolismo , Inflamación/patología , Proteínas de la Membrana/genética , NADPH Oxidasas/genética , Oxidantes/metabolismo , Oxidación-Reducción , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Methods Mol Biol ; 1070: 235-45, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24092445

RESUMEN

The growth of human tumor cells transplanted into immunodeficient mice is frequently studied to gain understanding about the way potential drug treatments interfere with growth in vivo. A wide range of methods is available for learning about specific aspects of tumor cell behavior, for example, cells may be administered to follow their ability to grow close to the site of injection which may be at a generic site or one specific to that type of tumor. Some models of metastasis follow the appearance of a tumor mass after intravascular administration of tumor cells; others score remote growth after removal of a primary tumor implanted subcutaneously. Assessing metastatic growth may increasingly rely on serial observation of tumor cell numbers as seen by whole-body imaging, but the sensitivity of these methods is poor in terms of the minimum number of cells detectable, and histological follow-up to establish tumor cell numbers can be confounded by variable expression or even silencing of reporter genes. Here we describe how fluorescence in situ hybridization (FISH) using commercially available probes can very easily be used to detect even single metastatic tumor cells in mouse models, using routinely fixed and processed tissue samples, and without the tumor cell lines needing to express engineered reporter genes. The FISH protocol can be combined with other standard histological protocols to study the behavior of tumor cells and adjacent host cells to improve our understanding of tumor-stroma interactions, and is also useful for simultaneous demonstration of the cell of origin and phenotype of cells used in regenerative medicine-based applications.


Asunto(s)
Neoplasias/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Animales , Humanos , Hibridación Fluorescente in Situ , Ratones , Fenotipo
18.
Elife ; 2: e00966, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24151545

RESUMEN

Lineage tracing approaches have provided new insights into the cellular mechanisms that support tissue homeostasis in mice. However, the relevance of these discoveries to human epithelial homeostasis and its alterations in disease is unknown. By developing a novel quantitative approach for the analysis of somatic mitochondrial mutations that are accumulated over time, we demonstrate that the human upper airway epithelium is maintained by an equipotent basal progenitor cell population, in which the chance loss of cells due to lineage commitment is perfectly compensated by the duplication of neighbours, leading to "neutral drift" of the clone population. Further, we show that this process is accelerated in the airways of smokers, leading to intensified clonal consolidation and providing a background for tumorigenesis. This study provides a benchmark to show how somatic mutations provide quantitative information on homeostatic growth in human tissues, and a platform to explore factors leading to dysregulation and disease. DOI:http://dx.doi.org/10.7554/eLife.00966.001.


Asunto(s)
Células Madre/metabolismo , Procesos Estocásticos , Tráquea/metabolismo , Células Epiteliales/metabolismo , Humanos , Fumar/metabolismo , Fumar/patología , Tráquea/citología
19.
Proc Natl Acad Sci U S A ; 110(27): E2490-9, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23766371

RESUMEN

The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO(-)) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.


Asunto(s)
Adenoma/patología , Linaje de la Célula/genética , Neoplasias Colorrectales/patología , Células Madre Multipotentes/patología , Células Madre Neoplásicas/patología , Adenoma/genética , Adenoma/metabolismo , Diferenciación Celular/genética , Células Clonales/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , ADN Mitocondrial/genética , ADN de Neoplasias/genética , Epigénesis Genética , Humanos , Modelos Biológicos , Células Madre Multipotentes/metabolismo , Mutación , Células Madre Neoplásicas/metabolismo
20.
Cell Rep ; 2(3): 540-52, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22999937

RESUMEN

Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The appearance and localization of Lgr5(+ve) cells coincided with that of the S-shaped body around embryonic day 14. Lgr5 expression remained restricted to cell clusters within developing nephrons in the cortex until postnatal day 7, when expression was permanently silenced. In vivo lineage tracing identified Lgr5 as a marker of a stem/progenitor population within nascent nephrons dedicated to generating the thick ascending limb of Henle's loop and distal convoluted tubule. The Lgr5 surface marker and experimental models described here will be invaluable for deciphering the contribution of early nephron stem cells to developmental defects and for isolating human nephron progenitors as a prerequisite to evaluating their therapeutic potential.


Asunto(s)
Linaje de la Célula/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Asa de la Nefrona/embriología , Receptores Acoplados a Proteínas G/biosíntesis , Células Madre/metabolismo , Animales , Humanos , Corteza Renal/citología , Corteza Renal/embriología , Asa de la Nefrona/citología , Ratones , Ratones Transgénicos , Receptores Acoplados a Proteínas G/genética , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...