Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13780, 2024 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877034

RESUMEN

Alzheimer's disease (AD), a severe neurodegenerative disorder, imposes socioeconomic burdens and necessitates innovative therapeutic strategies. Current therapeutic interventions are limited and underscore the need for novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), enzymes implicated in the pathogenesis of AD. In this study, we report a novel synthetic strategy for the generation of 2-aminopyridine derivatives via a two-component reaction converging aryl vinamidinium salts with 1,1-enediamines (EDAMs) in a dimethyl sulfoxide (DMSO) solvent system, catalyzed by triethylamine (Et3N). The protocol introduces a rapid, efficient, and scalable synthetic pathway, achieving good to excellent yields while maintaining simplistic workup procedures. Seventeen derivatives were synthesized and subsequently screened for their inhibitory activity against AChE and BChE. The most potent derivative, 3m, exhibited an IC50 value of 34.81 ± 3.71 µM against AChE and 20.66 ± 1.01 µM against BChE compared to positive control donepezil with an IC50 value of 0.079 ± 0.05 µM against AChE and 10.6 ± 2.1 µM against BChE. Also, detailed kinetic studies were undertaken to elucidate their modes of enzymatic inhibition of the most potent compounds against both AChE and BChE. The promising compound was then subjected to molecular docking and dynamics simulations, revealing significant binding affinities and favorable interaction profiles against AChE and BChE. The in silico ADMET assessments further determined the drug-like properties of 3m, suggesting it as a promising candidate for further pre-clinical development.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Aminopiridinas , Butirilcolinesterasa , Inhibidores de la Colinesterasa , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Enfermedad de Alzheimer/tratamiento farmacológico , Aminopiridinas/química , Aminopiridinas/síntesis química , Aminopiridinas/farmacología , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Humanos , Relación Estructura-Actividad , Iminas/química , Iminas/farmacología , Iminas/síntesis química
2.
RSC Med Chem ; 15(1): 207-222, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38283217

RESUMEN

Alzheimer's disease is a neurodegenerative disorder that impacts memory, thinking, and behavior, and currently, there is no effective cure available for its treatment. This study explored a one-pot strategy for synthesizing spiroindolinone-pyrazole derivatives through a sequential four-component condensation reaction. These derivatives were further investigated for their potential as anti-Alzheimer's disease agents. The developed synthetic procedure provides remarkable advantages, including a clean reaction profile, abundant starting materials, operational simplicity, and easy purification without traditional methods with good to excellent yields (84-96%). Next, the biological potencies of the newly synthesized spiroindolinone-pyrazole derivatives against AChE and BChE as Alzheimer's disease-related targets were determined. Also, the kinetic study and cytotoxicity of the most potent derivative were investigated. Furthermore, molecular docking and molecular dynamics evaluations were performed employing in silico tools to investigate the interaction, orientation, and conformation of the potent analog over the active site of the enzyme.

3.
Sci Rep ; 13(1): 11952, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488177

RESUMEN

In this study, a new series of spiro indolin-1,2-diazepine were designed, synthesized, and screened for their cholinesterase inhibitory activities. A novel, green, high-yielding approach was constructed to synthesize spiro indolin-1,2-diazepine derivatives through a cascade reaction of different isatins, malononitrile and 1,1-enediamines (EDAMs) via sequential four-component reactions to produce the target compounds with good to excellent yields. Next the inhibitory potencies of all derivatives were determined spectroscopically at 415 nm using the modified Ellman method. The results of the in vitro screening indicated that 5l with spiroindolin-1,2-diazepine core bearing 5-NO2 at R1 and 4-OH at R2 was the most potent and selective AChE inhibitor with an IC50 value of 3.98 ± 1.07 µM with no significant inhibition against BChE while 5j was the most active analog against both AChE and BChE enzymes. The structure-activity relationships suggested the variation in the inhibitory activities of derivatives was affected by different substitutions on the indolinone ring as well as the phenyl moiety. The enzyme kinetic studies of the most potent compound 5l at five different concentrations and acetylthiocholine substrate (0.1-1 mM) by Ellman's method revealed that it inhibited AChE in a mixed mode with a Ki of 0.044 µM. A molecular docking study was performed via induced fit docking protocol to predict the putative binding interaction. It was shown that the moieties used in the initial structure design play a fundamental role in interacting with the enzyme's binding site. Further, molecular dynamics simulations with the Schrödinger package were performed for 5l in a complex with AChE and revealed that compound 5l formed the stable complex with the enzyme. The MTT toxicity assessments against the neuroblastoma cell line were executed, and no toxicity was seen for 5l under the tested concentrations.


Asunto(s)
Azepinas , Inhibidores de la Colinesterasa , Humanos , Cinética , Simulación del Acoplamiento Molecular , Acetiltiocolina , Dolor
4.
Sci Rep ; 12(1): 15236, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075926

RESUMEN

The objective of this study was to design new polysubstituted pyrrole derivatives as selective acetylcholinesterase (AChE) inhibitors to target Alzheimer's disease. In this context, a highly efficient, one-pot, sequential, multi-component synthesis of a diverse range of polysubstituted pyrroles was developed through a sequential domino strategy by the condensation of amines with 1,1-bis(methylthio)-2-nitroethene (BMTNE), Knovenagle reaction of arylglyoxals with malono derivatives and subsequent Michael addition and intramolecular cyclization reaction in EtOH at reflux. Thirty-nine synthesized compounds were evaluated as AChE and butyrylcholinesterase (BChE) inhibitors. Among the synthesized compounds, compound 4ad (IC50 = 2.95 ± 1.31 µM) was the most potent and selective AChE inhibitor with no significant inhibition against butyrylcholinesterase BChE. A kinetic study of 4ad revealed that this compound inhibited AChE in an uncompetitive mode. Based on a molecular modeling study, compound 4ad due to its small size properly fitted into the active site of AChE compared to BChE and stabilized by H-bond and hydrophobic interactions with the critical residues of the AChE binding pocket. Consequently, it was proposed that the 4ad derivative can be an ideal lead candidate against AD with a simple and practical operation of synthetic procedures.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Humanos , Simulación del Acoplamiento Molecular , Pirroles/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...