Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(15)2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37570205

RESUMEN

Lignocellulosic materials are usually processed toward C5 and C6 corresponding sugars. Trifluoroacetic acid (TFA) is a pretreatment method to solubilize hemicellulose to sugars such xylose without degrading cellulose. However, this pretreatment has not been compared to other processes. Thus, this paper focuses on the techno-economic comparison of the C5-C6 production of C5-C6 as raw materials platforms using non-centrifuged sugarcane bagasse (NCSB) and Pinus patula wood chips (PP). Hydrolysates using TFA 2.5 M as an acid were characterized through HPLC regarding arabinose, galactose glucose, xylose, and mannose sugars. Then, simulations of the processes according to the experimental results were done. The economic assessment was performed, and compared with some common pretreatments. The mass and energy balances of the simulations indicate that the process can be compared with other pretreatments. From the economic perspective, the main operating expenditures (OpEx) are related to raw materials and capital depreciation due to the cost of TFA corrosion issues. The processes showed a CapEx and OpEx of 0.99 MUSD and 6.59 M-USD/year for NCSB, and 0.97 MUSD and 4.37 MUSD/year for PP, considering a small-scale base (1 ton/h). TFA pretreatment is innovative and promising from a techno-economic perspective.

2.
Foods ; 12(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37297474

RESUMEN

Many plant species characterize tropical forests, and a small fraction has been studied to favor small communities in the food and medicinal fields. The high biodiversity of these regions allows for the proposed alternatives for the valorization of exotic fruits due to their rich content of value-added compounds that benefit human health. This work focuses on improving the nutritional characteristics of the açai production chain by mixing it with noni and araza. As a main result, it was possible to enhance the organoleptic and nutritional characteristics of the fruits after freeze-drying. Then, the seeds and peels of the fruits were valorized by the extraction of bioactive compounds with conventional methods and biogas production by anaerobic digestion. The best compositions of antioxidant capacity and total phenolic compounds were obtained for the extracts based on the araza peel, with values of 116.4 µmol and 276.6 mg of gallic acid per 100 g of raw material, respectively. Regarding biogas production, the anaerobic digestion performance was influenced by the C/N ratio. The experimental results were used as input to simulate small-scale processes. From a technical point of view, the scheme of açai, noni, and araza mixture (Sc. 4) showed the highest mass yields (0.84 kg products/kg RM) and energy requirement (2.54 kW/kg RM). On the other hand, the processing of single açai (Sc. 1) presented the lowest capital costs (1.37 M-USD) and operating costs (0.89 M-USD/year). However, all scenarios showed techno-economic feasibility and demonstrated the potential of these fruits to valorize the açai market.

3.
Molecules ; 28(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36770944

RESUMEN

Biorefinery feasibility is highly influenced by the early design of the best feedstock transformation pathway to obtain value-added products. Pretreatment has been identified as the critical stage in biorefinery design since proper pretreatment influences subsequent reaction, separation, and purification processes. However, many pretreatment analyses have focused on preserving and valorizing six-carbon sugars for future use in bioconversion processes, leaving aside fractions such as hemicellulose and lignin. To date, there has been no pretreatment systematization for the removal of lignocellulosic fractions. This work defines pretreatment efficacy through operational, economic, environmental, and social indicators. Thus, using the data reported in the literature, as well as the results of the simulation schemes, a multi-criteria weighting of the best-performing schemes for the isolation or removal of cellulose, hemicellulose, and lignin was carried out. As a main result, it was concluded that dilute acid is the most effective for cellulose isolation and hemicellulose removal for producing platform products based on six- and five-carbon sugars, respectively. Additionally, the kraft process is the best methodology for lignin removal and its future use in biorefineries. The results of this work help to elucidate a methodological systematization of the pretreatment efficacy in the design of biorefineries as an early feasibility stage considering sustainability aspects.


Asunto(s)
Celulosa , Lignina , Lignina/metabolismo , Biomasa , Celulosa/metabolismo , Azúcares , Hidrólisis
4.
Sci Total Environ ; 728: 138841, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361121

RESUMEN

Coffee cut-stems (CCS), a biomass with high lignocellulosic content, is a coffee crop waste after bean harvesting. The main application of this material is as fuelwood for farmers, disregarding their carbohydrate content for biotechnological processes. In these terms, this work aims to compare three process scenarios for the experimental valorization of C5 fraction from CCS to produce biogas and furfural with and without the ethanol production from remaining C6 fraction under biorefinery concept. Therefore, an experimental stage was performed to obtain these products, based on a previous diluted acid pretreatment. The hydrolysate fraction was used to produce furfural and biogas, achieving yields of 0.34 g of furfural/g xylose and 81.1 mL of CH4 per gram of volatile solids. Concerning the solid fraction after acid pretreatment, it was used to produce ethanol with a previous enzymatic hydrolysis. After fermentation, 0.47 g of ethanol/g of glucose (92% of the theoretical yield) was obtained. These experimental results were fed to simulation models in order to compare three scenarios in technical, economic and environmental terms. As the main results, from technical point of view, the biogas production presents the lowest energy requirements. From the economic perspective, the furfural production presents a prefeasibility at the base scale of processing (e.g., 12.5 ton h-1). Meanwhile, the biogas scenario needs a processing capacity >22.5 ton h-1 to achieve the economic prefeasibility. In the biorefinery case, the positive economic performance is found at processing scales above 83 ton h-1. This work concludes that the C5 sugars platform is identified as a potential alternative for the generation of furfural and biogas, however, in this case a multiproduct biorefinery system is not always the best option to valorize biomass given the very high scale required and the economic indicators.


Asunto(s)
Biocombustibles , Furaldehído , Biomasa , Fermentación , Pentosas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...