Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 15(3): 816-23, 2013 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-23202252

RESUMEN

Muon spin relaxation and powder neutron diffraction have been combined to study three lithium cobalt nitride battery materials. Neutron diffraction shows that these retain the P6/mmm space group of Li(3)N with Co located only on Li(1) sites. The lattice parameters vary smoothly with the degree of metal substitution, such that the [Li(2)N] layers expand while the layer separation contracts, as observed previously for similar series of Cu- and Ni-substituted materials. However, in contrast to the latter, the Li(3-x-y)Co(x)N phases exhibit Curie-Weiss paramagnetism and this prevents the use of nuclear magnetic resonance to measure Li(+) transport parameters. Therefore, muon spin relaxation has been employed here as an alternative technique to obtain quantitative information about Li(+) diffusion. Muon spin relaxation shows that Li(+) diffusion in Li(3-x-y)Co(x)N is anisotropic with transport confined to the [Li(2)N] plane at low temperature and exchange between Li(1) and Li(2) sites dominant at high temperature. By a comparison with previous studies some general trends have been established across a range of Cu-, Ni- and Co-substituted materials. For intra-layer diffusion E(a) decreases as metal substitution increases and the corresponding expansion of the layers results in a more open pathway for Li(+) diffusion. However, an optimal value of x is found with a ≈ 3.69 Å after which the concomitant contraction in layer spacing reduces the polarizability of the lattice framework.

2.
Phys Chem Chem Phys ; 13(22): 10641-7, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21552595

RESUMEN

A combined NMR and neutron diffraction study has been carried out on three Li(3-x-y)Cu(x)N materials with x=0.17, x=0.29 and x=0.36. Neutron diffraction indicates that the samples retain the P6/mmm space group of the parent Li(3)N with Cu located only on Li(1) sites. The lattice parameters vary smoothly with x in a similar fashion to Li(3-x-y)Ni(x)N, but the Li(2) vacancy concentration for the Cu-substituted materials is negligible. This structural model is confirmed by wideline (7)Li NMR spectra at 193 K which show three different local environments for the Li(1) site, resulting from the substitution of neighbouring Li atoms in the Li(1) layer by Cu. Since the Cu-substituted materials are only very weakly paramagnetic, variable temperature (7)Li wideline NMR spectra can be used to measure diffusion coefficients and activation energies. These indicate anisotropic Li(+) diffusion similar to the parent Li(3)N with transport confined to the [Li(2)N] plane at low temperature and exchange between Li(1) and Li(2) sites dominant at high temperature. For the intra-layer process the diffusion coefficients at room temperature are comparable to Li(3)N and Li(3-x-y) Ni(x)N, while E(a) decreases as x increases in contrast to the opposite trend in Ni-substituted materials. For the inter-layer process E(a) decreases only slightly as x increases, but the diffusion coefficients at room temperature increase rapidly with x.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA