Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 8674, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457398

RESUMEN

The multiphase flow inside a diesel injection nozzle is imaged using synchrotron X-rays from the Advanced Photon Source at Argonne National Laboratory. Through acquisitions performed at several viewing angles and subsequent tomographic reconstruction, in-situ 3D visualization is achieved for the first time inside a steel injector at engine-like operating conditions. The morphology of the internal flow reveals strong flow separation and vapor-filled cavities (cavitation), the degree of which correlates with the nozzle's asymmetric inlet corner profile. Micron-scale surface features, which are artifacts of manufacturing, are shown to influence the morphology of the resulting liquid-gas interface. The data obtained at 0.1 ms time resolution exposes transient flow features and the flow development timescales are shown to be correlated with in-situ imaging of the fuel injector's hydraulically-actuated valve (needle). As more than 98.5% of the X-ray photon flux is attenuated within the steel injector body itself, we are posed with a unique challenge for imaging the flow within. Time-resolved imaging under these low-light conditions is achieved by exploiting both the refractive and absorptive properties of X-ray photons. The data-processing strategy converted these images with a signal-to-noise ratio of ~ 10 into a meaningful dataset for understanding internal flow and cavitation in a nozzle of diameter 200 µm enclosed within 1-2 millimeters of steel.

2.
Sci Rep ; 3: 2067, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23797665

RESUMEN

Cavitation is an intricate multiphase phenomenon that interplays with turbulence in fluid flows. It exhibits clear duality in characteristics, being both destructive and beneficial in our daily lives and industrial processes. Despite the multitude of occurrences of this phenomenon, highly dynamic and multiphase cavitating flows have not been fundamentally well understood in guiding the effort to harness the transient and localized power generated by this process. In a microscale, multiphase flow liquid injection system, we synergistically combined experiments using time-resolved x-radiography and a novel simulation method to reveal the relationship between the injector geometry and the in-nozzle cavitation quantitatively. We demonstrate that a slight alteration of the geometry on the micrometer scale can induce distinct laminar-like or cavitating flows, validating the multiphase computational fluid dynamics simulation. Furthermore, the simulation identifies a critical geometric parameter with which the high-speed flow undergoes an intriguing transition from non-cavitating to cavitating.

3.
J Synchrotron Radiat ; 19(Pt 4): 654-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22713903

RESUMEN

In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS.

4.
J Synchrotron Radiat ; 18(Pt 5): 811-5, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862863

RESUMEN

Combined measurements of X-ray absorption and fluorescence have been performed in jets of pure and diluted argon gas to demonstrate the feasibility of using X-ray fluorescence to study turbulent mixing. Measurements show a strong correspondence between the absorption and fluorescence measurements for high argon concentration. For lower argon concentration, fluorescence provides a much more robust measurement than absorption. The measurements agree well with the accepted behavior of turbulent jets.

5.
Science ; 295(5558): 1261-3, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11847333

RESUMEN

Synchrotron x-radiography and a fast x-ray detector were used to record the time evolution of the transient fuel sprays from a high-pressure injector. A succession of 5.1-microsecond radiographs captured the propagation of the spray-induced shock waves in a gaseous medium and revealed the complex nature of the spray hydrodynamics. The monochromatic x-radiographs also allow quantitative analysis of the shock waves that has been difficult if not impossible with optical imaging. Under injection conditions similar to those found in operating engines, the fuel jets can exceed supersonic speeds and result in gaseous shock waves.


Asunto(s)
Gasolina , Presión , Sincrotrones , Rayos X , Cerio , Reología , Hexafluoruro de Azufre , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA