Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 4831, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38413663

RESUMEN

Focused Ultrasound (FUS) has been shown to sensitize tumors outside the brain to Radiotherapy (RT) through increased ceramide-mediated apoptosis. This study investigated the effects of FUS + RT in healthy rodent brains and F98 gliomas. Tumors, or striata in healthy rats, were targeted with microbubble-mediated, pulsed FUS (220 kHz, 102-444 kPa), followed by RT (4, 8, 15 Gy). FUS + RT (8, 15 Gy) resulted in ablative lesions, not observed with FUS or RT only, in healthy tissue. Lesions were visible using Magnetic Resonance Imaging (MRI) within 72 h and persisted until 21 days post-treatment, indicating potential applications in ablative neurosurgery. In F98 tumors, at 8 and 15 Gy, where RT only had significant effects, FUS + RT offered limited improvements. At 4 Gy, where RT had limited effects compared with untreated controls, FUS + RT reduced tumor volumes observed on MRI by 45-57%. However, survival benefits were minimal (controls: 27 days, RT: 27 days, FUS + RT: 28 days). Histological analyses of tumors 72 h after FUS + RT (4 Gy) showed 93% and 396% increases in apoptosis, and 320% and 336% increases in vessel-associated ceramide, compared to FUS and RT only. Preliminary evidence shows that FUS + RT may improve treatment of glioma, but additional studies are required to optimize effect size.


Asunto(s)
Neoplasias Encefálicas , Glioma , Ratas , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Microburbujas , Línea Celular Tumoral , Glioma/diagnóstico por imagen , Glioma/radioterapia , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Ceramidas/farmacología , Barrera Hematoencefálica
2.
Adv Mater ; 35(52): e2308150, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949438

RESUMEN

Microbubbles (MB) are widely used for ultrasound (US) imaging and drug delivery. MB are typically spherically shaped, due to surface tension. When heated above their glass transition temperature, polymer-based MB can be mechanically stretched to obtain an anisotropic shape, endowing them with unique features for US-mediated blood-brain barrier (BBB) permeation. It is here shown that nonspherical MB can be surface-modified with BBB-specific targeting ligands, thereby promoting binding to and sonopermeation of blood vessels in the brain. Actively targeted rod-shaped MB are generated via 1D stretching of spherical poly(butyl cyanoacrylate) MB and via subsequently functionalizing their shell with antitransferrin receptor (TfR) antibodies. Using US and optical imaging, it is demonstrated that nonspherical anti-TfR-MB bind more efficiently to BBB endothelium than spherical anti-TfR-MB, both in vitro and in vivo. BBB-associated anisotropic MB produce stronger cavitation signals and markedly enhance BBB permeation and delivery of a model drug as compared to spherical BBB-targeted MB. These findings exemplify the potential of antibody-modified nonspherical MB for targeted and triggered drug delivery to the brain.


Asunto(s)
Barrera Hematoencefálica , Microburbujas , Receptores de Transferrina , Sonicación , Barrera Hematoencefálica/metabolismo , Receptores de Transferrina/metabolismo , Ligandos , Sistemas de Liberación de Medicamentos , Anticuerpos , Animales , Ratones , Femenino , Ratones Endogámicos BALB C , Línea Celular , Células Endoteliales/metabolismo
3.
Bioeng Transl Med ; 8(2): e10408, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36925708

RESUMEN

Effective chemotherapy delivery for glioblastoma multiforme (GBM) is limited by drug transport across the blood-brain barrier and poor efficacy of single agents. Polymer-drug conjugates can be used to deliver drug combinations with a ratiometric dosing. However, the behaviors and effectiveness of this system have never been well investigated in GBM models. Here, we report flexible conjugates of hyaluronic acid (HA) with camptothecin (CPT) and doxorubicin (DOX) delivered into the brain using focused ultrasound (FUS). In vitro toxicity assays reveal that DOX-CPT exhibited synergistic action against GBM in a ratio-dependent manner when delivered as HA conjugates. FUS is employed to improve penetration of DOX-HA-CPT conjugates into the brain in vivo in a murine GBM model. Small-angle x-ray scattering characterizations of the conjugates show that the DOX:CPT ratio affects the polymer chain flexibility. Conjugates with the highest flexibility yield the highest efficacy in treating mouse GBM in vivo. Our results demonstrate the association of FUS-enhanced delivery of combination chemotherapy and the drug-ratio-dependent flexibility of the HA conjugates. Drug ratio in the polymer nanocomplex may thus be employed as a key factor to modulate FUS drug delivery efficiency via controlling the polymer flexibility. Our characterizations also highlight the significance of understanding the flexibility of drug carriers in ultrasound-mediated drug delivery systems.

4.
Proc Natl Acad Sci U S A ; 120(13): e2218847120, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36940339

RESUMEN

Surface tension provides microbubbles (MB) with a perfect spherical shape. Here, we demonstrate that MB can be engineered to be nonspherical, endowing them with unique features for biomedical applications. Anisotropic MB were generated via one-dimensionally stretching spherical poly(butyl cyanoacrylate) MB above their glass transition temperature. Compared to their spherical counterparts, nonspherical polymeric MB displayed superior performance in multiple ways, including i) increased margination behavior in blood vessel-like flow chambers, ii) reduced macrophage uptake in vitro, iii) prolonged circulation time in vivo, and iv) enhanced blood-brain barrier (BBB) permeation in vivo upon combination with transcranial focused ultrasound (FUS). Our studies identify shape as a design parameter in the MB landscape, and they provide a rational and robust framework for further exploring the application of anisotropic MB for ultrasound-enhanced drug delivery and imaging applications.


Asunto(s)
Barrera Hematoencefálica , Microburbujas , Barrera Hematoencefálica/diagnóstico por imagen , Ultrasonografía , Transporte Biológico , Sistemas de Liberación de Medicamentos
5.
J Control Release ; 336: 443-456, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34186148

RESUMEN

Pyroglutamate-3 amyloid-ß (pGlu3 Aß) is an N-terminally modified, pathogenic form of amyloid-ß that is present in cerebral amyloid plaques and vascular deposits. Here, we used focused ultrasound (FUS) with microbubbles to enhance the intravenous delivery of an Fc-competent anti-pGlu3 Aß monoclonal antibody, 07/2a mAb, across the blood brain barrier (BBB) in an attempt to improve Aß removal and memory in aged APP/PS1dE9 mice, an Alzheimer's disease (AD)-like model of amyloidogenesis. First, we demonstrated that bilateral hippocampal FUS-BBB disruption (FUS-BBBD) led to a 5.5-fold increase of 07/2a mAb delivery to the brains compared to non-sonicated mice 72 h following a single treatment. Then, we determined that three weekly treatments with 07/2a mAb alone improved spatial learning and memory in aged, plaque-rich APP/PS1dE9 mice, and that this improvement occurred faster and in a higher percentage of animals when combined with FUS-BBBD. Mice given the combination treatment had reduced hippocampal plaque burden compared to PBS-treated controls. Furthermore, synaptic protein levels were higher in hippocampal synaptosomes from mice given the combination treatment compared to sham controls, and there were more CA3 synaptic puncta labeled in the APP/PS1dE9 mice given the combination treatment compared to those given mAb alone. Plaque-associated microglia were present in the hippocampi of APP/PS1dE9 mice treated with 07/2a mAb with and without FUS-BBBD. However, we discovered that plaque-associated Ly6G+ monocytes were only present in the hippocampi of APP/PS1dE9 mice that were given FUS-BBBD alone or even more so, the combination treatment. Lastly, FUS-BBBD did not increase the incidence of microhemorrhage in mice with or without 07/2a mAb treatment. Our findings suggest that FUS is a useful tool to enhance delivery and efficacy of an anti-pGlu3 Aß mAb for immunotherapy either via an additive effect or an independent mechanism. We revealed a potential novel mechanism wherein the combination of 07/2a mAb with FUS-BBBD led to greater monocyte infiltration and recruitment to plaques in this AD-like model. Overall, these effects resulted in greater plaque removal, sparing of synapses and improved cognitive function without causing overt damage, suggesting the possibility of FUS-BBBD as a noninvasive method to increase the therapeutic efficacy of drugs or biologics in AD patients.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Placa Amiloide , Ácido Pirrolidona Carboxílico
6.
Sci Rep ; 10(1): 8766, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32472017

RESUMEN

We investigated controlled blood-brain barrier (BBB) disruption using a low-frequency clinical transcranial MRI-guided focused ultrasound (TcMRgFUS) device and evaluated enhanced delivery of irinotecan chemotherapy to the brain and a rat glioma model. Animals received three weekly sessions of FUS, FUS and 10 mg/kg irinotecan, or irinotecan alone. In each session, four volumetric sonications targeted 36 locations in one hemisphere. With feedback control based on recordings of acoustic emissions, 98% of the sonication targets (1045/1071) reached a pre-defined level of acoustic emission, while the probability of wideband emission (a signature for inertial cavitation) was than 1%. BBB disruption, evaluated by mapping the R1 relaxation rate after administration of an MRI contrast agent, was significantly higher in the sonicated hemisphere (P < 0.01). Histological evaluation found minimal tissue effects. Irinotecan concentrations in the brain were significantly higher (P < 0.001) with BBB disruption, but SN-38 was only detected in <50% of the samples and only with an excessive irinotecan dose. Irinotecan with BBB disruption did not impede tumor growth or increase survival. Overall these results demonstrate safe and controlled BBB disruption with a low-frequency clinical TcMRgFUS device. While irinotecan delivery to the brain was not neurotoxic, it did not improve outcomes in the F98 glioma model.


Asunto(s)
Antineoplásicos/farmacocinética , Barrera Hematoencefálica , Irinotecán/farmacocinética , Imagen por Resonancia Magnética/métodos , Sonicación/métodos , Inhibidores de Topoisomerasa I/farmacocinética , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/análisis , Antineoplásicos/uso terapéutico , Edema Encefálico/etiología , Neoplasias Encefálicas/tratamiento farmacológico , Femenino , Glioma/tratamiento farmacológico , Irinotecán/administración & dosificación , Irinotecán/análisis , Irinotecán/uso terapéutico , Masculino , Microburbujas , Proyectos Piloto , Profármacos/administración & dosificación , Profármacos/análisis , Profármacos/farmacocinética , Profármacos/uso terapéutico , Púrpura/etiología , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Sonicación/efectos adversos , Sonicación/instrumentación , Inhibidores de Topoisomerasa I/administración & dosificación , Inhibidores de Topoisomerasa I/análisis , Inhibidores de Topoisomerasa I/uso terapéutico
7.
Ultrasound Med Biol ; 46(8): 1998-2006, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451192

RESUMEN

As focused ultrasound for blood-brain barrier disruption (FUS-BBBD) has progressed to human application, it has become necessary to consider the potential effects of prior irradiation treatments. Using a murine model, we examined the effects of whole-brain irradiation on FUS-BBBD. We first subjected half of the experimental cohort to daily 3-Gy whole-brain irradiation for 10 consecutive days. Then, microbubble-assisted FUS-BBBD was performed unilaterally while the contralateral sides served as unsonicated controls. FUS-BBBD, as evident by measuring the fluorescence yield of extravasated trypan blue dye, was identified at all sites with minimal or no apparent pathology. The peak fluorescence intensity caused by extravasated dye in the sonicated region was 17.5 ± 12.1% higher after radiation and FUS-BBBD than after FUS-BBBD alone, suggesting that prior radiation of the brain may be a sensitizing factor for FUS-BBBD. Radiation alone-without FUS-BBBD-resulted in mild BBB disruption. Hemorrhagic petechiae were observed in 9 of 12 radiated brains, with 77% of them clearly located outside the sonicated area; no petechiae were found in non-irradiated animals. This radiation protocol did not appear to increase the risk for vascular damage associated with FUS-BBBD.


Asunto(s)
Barrera Hematoencefálica/efectos de la radiación , Irradiación Craneana/efectos adversos , Ultrasonido Enfocado de Alta Intensidad de Ablación , Animales , Encéfalo/patología , Encéfalo/efectos de la radiación , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Ratones , Microburbujas/efectos adversos , Imagen Óptica/métodos
8.
Theranostics ; 9(21): 6284-6299, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31534551

RESUMEN

The blood-brain barrier (BBB) restricts delivery of most chemotherapy agents to brain tumors. Here, we investigated a clinical focused ultrasound (FUS) device to disrupt the BBB in rats and enhance carboplatin delivery to the brain using the F98 glioma model. Methods: In each rat, 2-3 volumetric sonications (5 ms bursts at 1.1 Hz for 75s) targeted 18-27 locations in one hemisphere. Sonication was combined with Definity microbubbles (10 µl/kg) and followed by intravenous carboplatin (50 mg/kg). Closed-loop feedback control was performed based on acoustic emissions analysis. Results: Safety and reliability were established in healthy rats after three sessions with carboplatin; BBB disruption was induced in every target without significant damage evident in MRI or histology. In tumor-bearing rats, concentrations of MRI contrast agent (Gadavist) were 1.7 and 3.3 times higher in the tumor center and margin, respectively, than non-sonicated tumors (P<0.001). Tissue-to-plasma ratios of intact carboplatin concentrations were increased by 7.3 and 2.9 times in brain and tumor respectively, at one hour after FUS and 4.2 and 2.4 times at four hours. Tumor volume doubling time in rats receiving FUS and carboplatin increased by 96% and 126% compared to rats that received carboplatin alone and non-sonicated controls, respectively (P<0.05); corresponding increases in median survival were 48% and 66% (P<0.01). Conclusion: Overall, this work demonstrates that actively-controlled BBB disruption with a clinical device can enhance carboplatin delivery without neurotoxicity at level that reduces tumor growth and improves survival in an aggressive and infiltrative rat glioma model.


Asunto(s)
Antineoplásicos/farmacocinética , Barrera Hematoencefálica , Neoplasias Encefálicas/tratamiento farmacológico , Carboplatino/farmacocinética , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Animales , Transporte Biológico , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Neoplasias Encefálicas/diagnóstico por imagen , Medios de Contraste/farmacocinética , Femenino , Glioma/diagnóstico por imagen , Masculino , Microburbujas , Ratas , Sonicación , Ultrasonografía
9.
Ultrasound Med Biol ; 45(8): 2104-2117, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31101446

RESUMEN

High intensity focused ultrasound (HIFU) mechanical ablation is an emerging technique for non-invasive transcranial surgery. Lesions are created by driving inertial cavitation in tissue, which requires significantly less peak pressure and time-averaged power compared with traditional thermal ablation. The utility of mechanical ablation could be extended to the brain provided the pressure threshold for inertial cavitation can be reduced. In this study, the utility of perfluorobutane (PFB)-based phase-shift nanoemulsions (PSNEs) for lowering the inertial cavitation threshold and enabling focal mechanical ablation in the brain was investigated. We successfully achieved vaporization of PFB-based PSNEs at 1.8 MPa with a 740 kHz focused transducer with a pulsed sonication protocol (duty cycle = 1.5%, 10 min sonication) within intact CD-1 mice brains. Evidence is provided showing that a single bolus injection of PSNEs could be used to initiate and sustain inertial cavitation in cerebrovasculature for at least 10 min. Histologic analysis of brain slices after HIFU exposure revealed ischemic and hemorrhagic lesions with dimensions that were comparable to the focal zone of the transducer. These results suggest that PFB-based PSNEs may be used to significantly reduce the inertial cavitation threshold in the cerebrovasculature and, when combined with transcranial focused ultrasound, enable focal intracranial mechanical ablation.


Asunto(s)
Encéfalo/cirugía , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Animales , Emulsiones , Fluorocarburos , Masculino , Ratones , Modelos Animales , Nanotecnología/métodos , Sonicación , Volatilización
10.
Ultrasound Med Biol ; 45(7): 1733-1742, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010598

RESUMEN

Magnetic resonance image-guided focused ultrasound has emerged as a viable non-invasive technique for the treatment of central nervous system-related diseases/disorders. Application of mechanical and thermal effects associated with focused transcranial ultrasound has been studied extensively in pre-clinical models, which has paved the way for clinical trials. However, in vivo treatment evaluation techniques on drug delivery application via blood-brain barrier opening has not been fully explored. Current treatment evaluation techniques via magnetic resonance imaging are hindered by systemic toxicity resulting from free gadolinium delivery. Here we propose a novel treatment evaluation strategy to overcome limitations by (i) synthesizing liposomes that are dually labeled with gadolinium, a magnetic resonance imaging (MRI) contrast agent, and rhodamine, a fluorophore; (ii) applying a focused ultrasound (FUS)-mediated BBB opening technique to deliver the liposomes across vascular barriers, achieving local gadolinium enhancement while reducing systemic and unwanted regional toxic effects associated with free gadolinium; and (iii) utilizing the MRI modality to confirm the delivery as it is already included in the FUS treatment in clinic. Liposomes were secondarily labeled with a fluorescent marker to confirm results obtained by MRI quantification postmortem. Two different sizes, 77.5 nm (group A) and 140 nm (group B), of gadolinium- and fluorescence-labeled liposomes were fabricated using thin-film hydration followed by extrusion methods and determined their stability up to 6 h under physiologic conditions. Gadolinium signal was detected on contrast-enhanced T1-weighted MRI 5 h after the delivery of liposomes via the BBB opening approach with an ultrasound pulse of 0.42 MPa (estimate in water) combined with microbubbles. MRI contrast was enhanced significantly in sonicated regions compared with non-sonicated regions of the brain. This was due to the accumulation of labeled liposomes, which was confirmed by detection of rhodamine fluorescence in histologic sections. The relative increase in MRI signal intensity was greater for smaller liposomes (mean diameter = 77.5 nm) than larger liposomes (mean diameter = 140 nm), which suggested a greater accumulation of the smaller liposomes in the brain after ultrasound-mediated opening of the BBB. Our findings suggest that the dual-labeled nanocarrier platform can be established, the FUS-mediated BBB opening approach can be used to deliver it through vascular barriers and MRI can be used to evaluate the extent of nanocarrier delivery.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Gadolinio , Liposomas/metabolismo , Imagen por Resonancia Magnética/métodos , Rodaminas , Ultrasonografía/métodos , Animales , Sistemas de Liberación de Medicamentos/métodos , Liposomas/administración & dosificación , Masculino , Ratones , Modelos Animales
11.
Neuroimage ; 189: 267-275, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30659957

RESUMEN

The technology of transcranial focused ultrasound (FUS) enables a novel approach to neuromodulation, a tool for selective manipulation of brain function to be used in neurobiology research and with potential applications in clinical treatment. The method uses transcranial focused ultrasound to non-invasively open the blood-brain barrier (BBB) in a localized region such that a systemically injected neurotransmitter chemical can be delivered to the targeted brain site. The approach modulates the chemical signaling that occurs in and between neurons, making it complimentary to most other neuromodulation techniques that affect the electrical properties of neuronal activity. Here, we report delivering the inhibitory neurotransmitter GABA to the right somatosensory cortex of the rat brain during bilateral hind paw electrical stimulation and measure the inhibition of activation using functional MRI (fMRI). In a 2 × 2 factorial design, we evaluated conditions of BBB Closed vs BBB Open and No GABA vs GABA. Results from fMRI measurements of the blood oxygen level-dependent (BOLD) signal show: 1) intravenous GABA injection without FUS-mediated BBB opening does not have an effect on the BOLD response; 2) FUS-mediated BBB opening alone significantly alters the BOLD signal response to the stimulus, both in amplitude and shape of the time course; 3) the combination of FUS-mediated BBB opening and GABA injection further reduces the peak amplitude and spatial extent of the BOLD signal response to the stimulus. The data support the thesis that FUS-mediated opening of the BBB can be used to achieve non-invasive delivery of neuroactive substances for targeted manipulation of brain function.


Asunto(s)
Barrera Hematoencefálica , Neurotransmisores/administración & dosificación , Corteza Somatosensorial , Ondas Ultrasónicas , Ácido gamma-Aminobutírico/administración & dosificación , Animales , Estimulación Eléctrica , Neuroimagen Funcional , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/fisiología
12.
Proc Natl Acad Sci U S A ; 114(48): E10281-E10290, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29133392

RESUMEN

Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/terapia , Doxorrubicina/análogos & derivados , Sistemas de Liberación de Medicamentos/métodos , Glioma/terapia , Terapia por Ultrasonido/métodos , Acústica/instrumentación , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Carbocianinas/química , Carbocianinas/farmacocinética , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/instrumentación , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacocinética , Glioma/diagnóstico por imagen , Glioma/metabolismo , Glioma/patología , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Proteínas Luminiscentes/química , Proteínas Luminiscentes/farmacocinética , Imagen por Resonancia Magnética , Masculino , Microburbujas , Terapia Molecular Dirigida , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietilenglicoles/farmacología , Ratas , Ratas Sprague-Dawley , Transductores , Ondas Ultrasónicas
13.
Sci Rep ; 5: 16253, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26542745

RESUMEN

Here we describe a novel method to noninvasively modulate targeted brain areas through the temporary disruption of the blood-brain barrier (BBB) via focused ultrasound, enabling focal delivery of a neuroactive substance. Ultrasound was used to locally disrupt the BBB in rat somatosensory cortex, and intravenous administration of GABA then produced a dose-dependent suppression of somatosensory-evoked potentials in response to electrical stimulation of the sciatic nerve. No suppression was observed 1-5 days afterwards or in control animals where the BBB was not disrupted. This method has several advantages over existing techniques: it is noninvasive; it is repeatable via additional GABA injections; multiple brain regions can be affected simultaneously; suppression magnitude can be titrated by GABA dose; and the method can be used with freely behaving subjects. We anticipate that the application of neuroactive substances in this way will be a useful tool for noninvasively mapping brain function, and potentially for surgical planning or novel therapies.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Animales , Barrera Hematoencefálica , Corteza Cerebral/citología , Estimulación Eléctrica , Potenciales Evocados Somatosensoriales , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico/administración & dosificación
14.
J Neurosurg ; 119(5): 1208-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24010975

RESUMEN

OBJECT: Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. METHODS: In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. RESULTS: Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. CONCLUSIONS: This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in deep brain structures while preserving function in adjacent nerves. Because of low vascularity--and thus a low microbubble concentration--some large white matter tracts appear to have some natural resistance to this type of ablation compared with gray matter. While future work is needed to develop methods of monitoring the procedure and establishing its safety at deep brain targets, the technique does appear to be a potential solution that allows FUS ablation of deep brain targets while sparing adjacent nerve structures.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/normas , Vías Visuales/cirugía , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...