Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685194

RESUMEN

The slow reaction rates to chemical and photochemical degradation are well-known properties of plastics. However, large plastic surfaces exposed to environmental conditions release particles and compounds that affect ecosystems and human health. The aim of this work was to identify compounds associated with the degradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics (markers) on silica and sand and evaluate their use to screen microplastics on natural sand. Products were identified by using targeted and untargeted LC-HRMS analysis. All polymers underwent chemical oxidation on silica. PE released dicarboxylic acids (HO2C-(CH2)n-CO2H (n = 4-30), while PS released cis/trans-chalcone, trans-dypnone, 3-phenylpropiophenone, and dibenzoylmethane. PVC released dicarboxylic acids and aromatic compounds. Upon irradiation, PE was stable while PS released the same compounds as under chemical oxidation but at lower yields. Under the above condition, PVC generated HO2C-[CH2-CHCl]n-CH2-CO2H and HO2C-[CH2-CHCl]n-CO2H (n = 2-19) dicarboxylic acids. The same products were detected on sand but at a lower concentration than on silica due to better retention within the pores. Detection of markers of PE and PS on natural sand allowed us to screen microplastics by following a targeted analysis. Markers of PVC were not detected before or after thermal/photo-oxidation due to the low release of compounds and limitations associated with surface exposure/penetration of radiation.

2.
Fish Shellfish Immunol ; 148: 109516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548189

RESUMEN

The genome evolution of Antarctic notothenioids has been modulated by their extreme environment over millennia and more recently by human-caused constraints such as overfishing and climate change. Here we investigated the characteristics of the immune system in Notothenia rossii and how it responds to 8 h immersion in viral (Poly I:C, polyinosinic: polycytidylic acid) and bacterial (LPS, lipopolysaccharide) proxies. Blood plasma antiprotease activity and haematocrit were reduced in Poly I:C-treated fish only, while plasma protein, lysozyme activity and cortisol were unchanged with both treatments. The skin and duodenum transcriptomes responded strongly to the treatments, unlike the liver and spleen which had a mild response. Furthermore, the skin transcriptome responded most to the bacterial proxy (cell adhesion, metabolism and immune response processes) and the duodenum (metabolism, response to stress, regulation of intracellular signal transduction, and immune system responses) to the viral proxy. The differential tissue response to the two proxy challenges is indicative of immune specialisation of the duodenum and the skin towards pathogens. NOD-like and C-type lectin receptors may be central in recognising LPS and Poly I:C. Other antimicrobial compounds such as iron and selenium-related genes are essential defence mechanisms to protect the host from sepsis. In conclusion, our study revealed a specific response of two immune barrier tissue, the skin and duodenum, in Notothenia rossii when exposed to pathogen proxies by immersion, and this may represent an adaptation to pathogen infective strategies.


Asunto(s)
Conservación de los Recursos Naturales , Perciformes , Humanos , Animales , Inmersión , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Explotaciones Pesqueras , Perciformes/metabolismo , Poli I/metabolismo , Regiones Antárticas
3.
Mol Cell Endocrinol ; 586: 112192, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38408601

RESUMEN

Family B1 G protein-coupled receptors (GPCRs) are one of the most well studied neuropeptide receptor families since they play a central role in many biological processes including endocrine, gastrointestinal, cardiovascular and reproduction in animals. The genes for these receptors emerged from a common ancestral gene in bilaterian genomes and evolved via gene/genome duplications and deletions in vertebrate and invertebrate genomes. Their existence and function have mostly been characterized in vertebrates and few studies exist in invertebrate species. Recently, an increased interest in molluscs, means a series of genomes have become available, and since they are less modified than insect and nematode genomes, they are ideal to explore the origin and evolution of neuropeptide gene families. This review provides an overview of Family B1 GPCRs and their peptide ligands and incorporates new data obtained from Mollusca genomes and taking a comparative approach challenges existing models on their origin and evolution.


Asunto(s)
Neuropéptidos , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/genética , Invertebrados/genética , Vertebrados , Neuropéptidos/genética , Moluscos/genética , Ligandos , Evolución Molecular , Filogenia
4.
Sci Total Environ ; 914: 169979, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215851

RESUMEN

Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 µg/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PS-NPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a cell-type and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Recién Nacido , Humanos , Masculino , Femenino , Poliestirenos/metabolismo , Plásticos , Microplásticos , Pez Cebra/metabolismo , Especies Reactivas de Oxígeno , Nanopartículas/química , Fibroblastos/metabolismo , Contaminantes Químicos del Agua/metabolismo
5.
J Adv Res ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37995944

RESUMEN

INTRODUCTION: Bivalve molluscs are abundant in marine and freshwater systems and contribute essential ecosystem services. They are characterized by an exuberant diversity of biomineralized shells and typically have two symmetric valves (a.k.a shells), but oysters (Ostreidae), some clams (Anomiidae and Chamidae) and scallops (Pectinida) have two asymmetrical valves. Predicting and modelling the likely consequences of ocean acidification on bivalve survival, biodiversity and aquaculture makes understanding shell biomineralization and its regulation a priority. OBJECTIVES: This study aimed to a) exploit the atypical asymmetric shell growth of some bivalves and through comparative analysis of the genome and transcriptome pinpoint candidate biomineralization-related genes and regulatory long non-coding RNAs (LncRNAs) and b) demonstrate their roles in regulating shell biomineralization/growth. METHODS: Meta-analysis of genomes, de novo generated mantle transcriptomes or transcriptomes and proteomes from public databases for six asymmetric to symmetric bivalve species was used to identify biomineralization-related genes. Bioinformatics filtering uncovered genes and regulatory modules characteristic of bivalves with asymmetric shells and identified candidate biomineralization-related genes and lncRNAs with a biased expression in asymmetric valves. A shell regrowth model in oyster and gene silencing experiments, were used to characterize candidate gene function. RESULTS: Shell matrix genes with asymmetric expression in the mantle of the two valves were identified and unique cis-regulatory lncRNA modules characterized in Ostreidae. LncRNAs that regulate the expression of the tissue inhibitor of metalloproteinases gene family (TIMPDR) and of the shell matrix protein domain family (SMPDR) were identified. In vitro and in vivo silencing experiments revealed the candidate genes and lncRNA were associated with divergent shell growth rates and modified the microstructure of calcium carbonate (CaCO3) crystals. CONCLUSION: LncRNAs are putative regulatory factors of the bivalve biomineralization toolbox. In the Ostreidae family of bivalves biomineralization-related genes are cis-regulated by lncRNA and modify the planar growth rate and spatial orientation of crystals in the shell.

6.
Sci Total Environ ; 905: 166834, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37717744

RESUMEN

The herbicide ioxynil (IOX) and the synthetic estrogen diethylstilbestrol (DES) are environmentally relevant contaminants that act as endocrine disruptors (EDCs) and have recently been shown to be cardiovascular disruptors in vertebrates. Mussels, Mytilus coruscus, were exposed to low doses of IOX (0.37, 0.037 and 0.0037 mg/L) and DES (0.27, 0.027 and 0.0027 mg/L) via the water and the effect monitored by generating whole animal transcriptomes and measuring cardiac performance and shell growth. One day after IOX (0.37 and 0.037 mg/L) and DES (0.27 and 0.027 mg/L) exposure heart rate frequency was decreased in both groups and 0.27 mg/L DES significantly reduced heart rate frequency with increasing time of exposure (P < 0.05) and no acclimatization occurred. The functional effects were coupled to significant differential expression of genes of the serotonergic synapse pathway and cardiac-related genes at 0.027 mg/L DES, which suggests that impaired heart function may be due to interference with neuroendocrine regulation and direct cardiac effect genes. Multiple genes related to detoxifying xenobiotic substances were up regulated and genes related to immune function were down regulated in the DES group (vs. control), indicating that detoxification processes were enhanced, and the immune response was depressed. In contrast, IOX had a minor disrupting effect at a molecular level. Of note was a significant suppression (P < 0.05) by DES of shell growth in juveniles and lower doses (< 0.0027 mg/L) had a more severe effect. The shell growth depression in 0.0027 mg/L DES-treated juveniles was not accompanied by abundant differential gene expression, suggesting that the effect of 0.0027 mg/L DES on shell growth may be direct. The results obtained in the present study reveal for the first time that IOX and DES may act as neuroendocrine disrupters with a broad spectrum of effects on cardiac performance and shell growth, and that DES exposure had a much more pronounced effect than IOX in a marine bivalve.


Asunto(s)
Dietilestilbestrol , Mytilus , Animales , Dietilestilbestrol/toxicidad , Dietilestilbestrol/metabolismo , Corazón , Nitrilos/metabolismo , Yodobencenos
7.
Mar Pollut Bull ; 193: 115218, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37441915

RESUMEN

16S rRNA gene sequencing and bacteria- and genus-specific quantitative PCR was used to profile microbial communities and their associated functions in water, live feed (microalgae, Artemia, and rotifer), and European sea bass and gilthead sea bream larvae from hatcheries in Greece and Italy. The transfer to larvae of genus containing potential pathogens of fish was more likely with Artemia and rotifer than with microalgae or water, irrespective of geographic location. The presence of potentially pathogenic bacteria (Vibrio and Pseudoalteromonas) in the core microbiota of water, live feed, and fish larvae, the enrichment of different bacterial resistance pathways and biofilm formation, and the overall low beneficial bacteria load during larval ontogeny emphasizes the risk for disease outbreaks. The present data characterizing microbiota in commercial aquaculture hatcheries provides a baseline for the design of strategies to manage disease and to model or remediate potential adverse environmental impacts.


Asunto(s)
Microbiota , Rotíferos , Vibrio , Animales , ARN Ribosómico 16S/genética , Acuicultura , Microbiota/genética , Rotíferos/genética , Vibrio/genética , Larva , Agua
8.
Plants (Basel) ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36987082

RESUMEN

Susceptibility to the severe Citrus tristeza virus (CTV), T36, is higher for Citrus macrophylla (CM) than for C. aurantium (CA). How host-virus interactions are reflected in host physiology is largely unknown. In this study, the profile of metabolites and the antioxidant activity in the phloem sap of healthy and infected CA and CM plants were evaluated. The phloem sap of quick decline (T36) and stem pitting (T318A) infected citrus, and control plants was collected by centrifugation, and the enzymes and metabolites analyzed. The activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), in infected plants increased significantly in CM and decreased in CA, compared to the healthy controls. Using LC-HRMS2 a metabolic profile rich in secondary metabolites was assigned to healthy CA, compared to healthy CM. CTV infection of CA caused a drastic reduction in secondary metabolites, but not in CM. In conclusion, CA and CM have a different response to severe CTV isolates and we propose that the low susceptibility of CA to T36 may be related to the interaction of the virus with the host's metabolism, which reduces significantly the synthesis of flavonoids and antioxidant enzyme activity.

9.
Genes (Basel) ; 14(2)2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36833215

RESUMEN

Many marine invertebrate larvae undergo complex morphological and physiological changes during the planktonic-benthic transition (a.k.a. metamorphosis). In this study, transcriptome analysis of different developmental stages was used to uncover the molecular mechanisms underpinning larval settlement and metamorphosis of the mussel, Mytilus coruscus. Analysis of highly upregulated differentially expressed genes (DEGs) at the pediveliger stage revealed enrichment of immune-related genes. The results may indicate that larvae co-opt molecules of the immune system to sense and respond to external chemical cues and neuroendocrine signaling pathways forecast and trigger the response. The upregulation of adhesive protein genes linked to byssal thread secretion indicates the anchoring capacity required for larval settlement arises prior to metamorphosis. The results of gene expression support a role for the immune and neuroendocrine systems in mussel metamorphosis and provide the basis for future studies to disentangle gene networks and the biology of this important lifecycle transformation.


Asunto(s)
Mytilus , Animales , Mytilus/genética , Transcriptoma , Plancton , Estadios del Ciclo de Vida , Metamorfosis Biológica/genética , Larva
10.
Fish Shellfish Immunol ; 134: 108647, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36842641

RESUMEN

Fish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly susceptible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 °C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 °C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 °C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colXα, col1α1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and pparγ) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.


Asunto(s)
Lubina , Desarrollo Embrionario , Piel , Temperatura , Cicatrización de Heridas , Animales , Desarrollo Embrionario/fisiología , Embrión no Mamífero , Piel/inmunología , Piel/lesiones , Cicatrización de Heridas/genética , Cicatrización de Heridas/inmunología , Regulación del Desarrollo de la Expresión Génica , Inmunidad Innata/genética , Epigénesis Genética/inmunología
11.
Sci Rep ; 12(1): 17896, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284204

RESUMEN

Skeletal abnormalities are one of the most important key-performance-indicators (KPIs) in finfish hatcheries. Coping with the problem of skeletal abnormalities relies on the understanding of the link between the variability in the rearing conditions, and the variability in abnormalities incidence. Here, 74 seabream larval populations, from four commercial hatcheries, were examined for the presence of abnormalities and monitored with respect to the applied conditions. The inward folding of gill-cover and pugheadedness were the most frequent abnormalities present, with a mean (± SD) frequency of 11.3 ± 17.9 and 6.0 ± 7.2%, respectively. Other abnormalities were observed at very low mean rates (≤ 1%). A new abnormality type, ray-resorption syndrome, was also found. The recorded rate of normally inflated swimbladder was 92.3 ± 7.4% and mean survival rate was 25.9 ± 21.0%. Classification tree analysis indicated six rearing variables as potentially important predictors for pugheadedness, six variables for caudal-fin abnormalities and 10 variables for survival rate. Complementary genetic analysis, revealed differentiating genetic diversity and significant genetic distances among participating hatcheries, suggestive of the role of company-specific management of genetic resources in KPIs' variability. The results are discussed with respect to their potential use in the control of skeletal abnormalities by commercial hatcheries, as well as for benchmarking among different hatcheries.


Asunto(s)
Dorada , Animales , Branquias , Larva
12.
Front Genet ; 13: 987867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276944

RESUMEN

Diffuse Idiopathic Skeletal Hyperostosis (DISH) and Ossification of the Posterior Longitudinal Ligament (OPLL) are common disorders characterized by the ossification of spinal ligaments. The cause for this ossification is currently unknown but a genetic contribution has been hypothesized. Over the last decade, many studies on the genetics of ectopic calcification disorders have been performed, mainly on OPLL. Most of these studies were based on linkage analysis and case control association studies. Animal models have provided some clues but so far, the involvement of the identified genes has not been confirmed in human cases. In the last few years, many common variants in several genes have been associated with OPLL. However, these associations have not been at definitive levels of significance and evidence of functional significance is generally modest. The current evidence suggests a multifactorial aetiopathogenesis for DISH and OPLL with a subset of cases showing a stronger genetic component.

13.
Microbiologyopen ; 11(3): e1274, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35765179

RESUMEN

The goal of this study was to design genus-specific primers for rapid evaluation of the most abundant bacterial genera identified using amplicon-based sequencing of the 16S rRNA gene in fish-related samples and surrounding water. Efficient genus-specific primers were designed for 11 bacterial genera including Alkalimarinus, Colwellia, Enterovibrio, Marinomonas, Massilia, Oleispira, Phaeobacter, Photobacterium, Polarbacerium, Pseudomonas, and Psychrobium. The specificity of the primers was confirmed by the phylogeny of the sequenced polymerase chain reaction (PCR) amplicons that indicated primers were genus-specific except in the case of Colwellia and Phaeobacter. Copy number of the 16S rRNA gene obtained by quantitative PCR using genus-specific primers and the relative abundance obtained by 16S rRNA gene sequencing using universal primers were well correlated for the five analyzed abundant bacterial genera. Low correlations between quantitative PCR and 16S rRNA gene sequencing for Pseudomonas were explained by the higher coverage of known Pseudomonas species by the designed genus-specific primers than the universal primers used in 16S rRNA gene sequencing. The designed genus-specific primers are proposed as rapid and cost-effective tools to evaluate the most abundant bacterial genera in fish-related or potentially other metagenomics samples.


Asunto(s)
Metagenómica , Rhodobacteraceae , Animales , Cartilla de ADN/genética , Peces , Larva , Metagenoma , Pseudomonas/genética , ARN Ribosómico 16S/genética
14.
Sci Total Environ ; 838(Pt 3): 156328, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35649452

RESUMEN

The world is heading in the wrong direction on carbon emissions where we are not on track to limit global warming to 1.5 °C; Ireland is among the countries where overall emissions have continued to rise. The development of wettable peatland products and services (termed 'Paludiculture') present significant opportunities for enabling a transition away from peat-harvesting (fossil fuels) to developing 'green' eco-innovations. However, this must be balanced with sustainable carbon sequestration and environmental protection. This complex transition from 'brown to green' must be met in real time by enabling digital technologies across the full value chain. This will potentially necessitate creation of new green-business models with the potential to support disruptive innovation. This timely paper describes digital transformation of paludiculture-based eco-innovation that will potentially lead to a paradigm shift towards using smart digital technologies to address efficiency of products and services along with future-proofing for climate change. Digital transform of paludiculture also aligns with the 'Industry 5.0 - a human-centric solution'. However, companies supporting peatland innovation may lack necessary standards, data-sharing or capabilities that can also affect viable business model propositions that can jeopardize economic, political and social sustainability. Digital solutions may reduce costs, increase productivity, improve produce develop, and achieve faster time to market for paludiculture. Digitisation also enables information systems to be open, interoperable, and user-friendly. This constitutes the first study to describe the digital transformation of paludiculture, both vertically and horizontally, in order to inform sustainability that includes process automation via AI, machine learning, IoT-Cloud informed sensors and robotics, virtual and augmented reality, and blockchain for cyber-physical systems. Thus, the aim of this paper is to describe the applicability of digital transformation to actualize the benefits and opportunities of paludiculture activities and enterprises in the Irish midlands with a global orientation.


Asunto(s)
Secuestro de Carbono , Conservación de los Recursos Naturales , Cambio Climático , Humanos , Industrias , Suelo
15.
Front Immunol ; 13: 840861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359984

RESUMEN

Complement proteins emerged early in evolution but outside the vertebrate clade they are poorly characterized. An evolutionary model of C3 family members revealed that in contrast to vertebrates the evolutionary trajectory of C3-like genes in cnidarian, protostomes and invertebrate deuterostomes was highly divergent due to independent lineage and species-specific duplications. The deduced C3-like and vertebrate C3, C4 and C5 proteins had low sequence conservation, but extraordinarily high structural conservation and 2-chain and 3-chain protein isoforms repeatedly emerged. Functional characterization of three C3-like isoforms in a bivalve representative revealed that in common with vertebrates complement proteins they were cleaved into two subunits, b and a, and the latter regulated inflammation-related genes, chemotaxis and phagocytosis. Changes within the thioester bond cleavage sites and the a-subunit protein (ANATO domain) explained the functional differentiation of bivalve C3-like. The emergence of domain-related functions early during evolution explains the overlapping functions of bivalve C3-like and vertebrate C3, C4 and C5, despite low sequence conservation and indicates that evolutionary pressure acted to conserve protein domain organization rather than the primary sequence.


Asunto(s)
Complemento C3 , Invertebrados , Secuencia de Aminoácidos , Animales , Complemento C3/metabolismo , Filogenia , Especificidad de la Especie
16.
Data Brief ; 41: 107971, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35252491

RESUMEN

Contamination of aquatic ecosystems with anthropogenic pollutants, including pharmaceutical drugs, is a major concern worldwide. Aquatic organisms such as fish are particularly at risk of exposure to pollutants. The surface of fish is the first point of contact with pollutants, but few studies have considered the impact of pollutants on the skin-scale barrier. The present proteome data are the basis of the findings discussed in the associated research article "Proteomics of sea bass skin-scales exposed to the emerging pollutant fluoxetine compared to estradiol" [1]. Juvenile sea bass were exposed by intraperitoneal injections to: a) the antidepressant fluoxetine (FLX), a widely prescribed psychotropic drug and an emerging pollutant; b) the natural estrogen 17ß-estradiol (E2) and c) the vehicle, coconut oil (control). The scale proteome of fish exposed to these compounds for 5 days was analysed using quantitative label-free proteomics technology SWATH-MS (sequential windowed data-independent acquisition of the total high-resolution-mass spectra). The proteome data generated was submitted to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD020983. LC-MS data from pooled protein extracts from the scales of all experimental groups was acquired using information-dependent acquisition (IDA) and 1,254 proteins were identified by searching against the sea bass genome database. 715 proteins were quantified by SWATH acquisition, and 213 proteins had modified levels (p < 0.05) between the E2- or FLX-exposed fish compared to the control. The main biological processes and KEGG pathways affected by E2 or FLX treatments were identified using Cytoscape/ClueGO enrichment analyses.

17.
Front Immunol ; 13: 812890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237266

RESUMEN

Toll-like receptors (TLRs) recognize conserved pathogen-associated molecular patterns (PAMPs) and are an ancient and well-conserved group of pattern recognition receptors (PRRs). The isolation of the Antarctic continent and its unique teleost fish and microbiota prompted the present investigation into Tlr evolution. Gene homologues of tlr members in teleosts from temperate regions were present in the genome of Antarctic Nototheniidae and the non-Antarctic sister lineage Bovichtidae. Overall, in Nototheniidae apart from D. mawsoni, no major tlr gene family expansion or contraction occurred. Instead, lineage and species-specific changes in the ectodomain and LRR of Tlrs occurred, particularly in the Tlr11 superfamily that is well represented in fish. Positive selective pressure and associated sequence modifications in the TLR ectodomain and within the leucine-rich repeats (LRR), important for pathogen recognition, occurred in Tlr5, Tlr8, Tlr13, Tlr21, Tlr22, and Tlr23 presumably associated with the unique Antarctic microbiota. Exposure to lipopolysaccharide (Escherichia coli O111:B4) Gram negative bacteria did not modify tlr gene expression in N. rossii head-kidney or anterior intestine, although increased water temperature (+4°C) had a significant effect.


Asunto(s)
Inmunidad Innata , Receptores Toll-Like , Animales , Peces/genética , Inmunidad Innata/genética , Filogenia , Análisis de Secuencia de ADN , Temperatura , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
18.
Biol Open ; 11(3)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35199828

RESUMEN

A possible explanation for acidification-induced changes in fish behaviour is that acidification interferes with neurogenesis and modifies the plasticity of neuronal circuitry in the brain. We tested the effects on the olfactory system and brain of gilthead seabream (Sparus aurata) to 4 weeks' exposure to ocean acidification (OA). Olfactory epithelium (OE) morphology changed shortly after OA exposure and persisted over the 4 weeks. Expression of genes related to olfactory transduction, neuronal excitability, synaptic plasticity, GABAergic innervation, and cell proliferation were unchanged in the OE and olfactory bulb (OB) after 4 weeks' exposure. Short-term changes in the ionic content of plasma and extradural fluid (EDF) returned to control levels after 4 weeks' exposure, except for [Cl-], which remained elevated. This suggests that, in general, there is an early physiological response to OA and by 4 weeks a new homeostatic status is achieved. However, expression of genes involved in proliferation, differentiation and survival of undifferentiated neurons were modified in the brain. In the same brain areas, expression of thyroid hormone signalling genes was altered suggesting modifications in the thyroid-system may be linked to the changes in neuroplasticity and neurogenesis. Overall, the results of the current study are consistent with and effect of OA on neuroplasticity.


Asunto(s)
Dorada , Animales , Concentración de Iones de Hidrógeno , Plasticidad Neuronal , Océanos y Mares , Agua de Mar
19.
Microorganisms ; 9(11)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34835401

RESUMEN

A comprehensive understanding of how bacterial community abundance changes in fishes during their lifecycle and the role of the microbiota on health and production is still lacking. From this perspective, the egg bacterial communities of two commercially farmed species, the European seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata), from different aquaculture sites were compared, and the potential effect of broodstock water microbiota and disinfectants on the egg microbiota was evaluated. Moreover, 16S ribosomal RNA gene sequencing was used to profile the bacterial communities of the eggs and broodstock water from three commercial hatcheries. Proteobacteria were the most common and dominant phyla across the samples (49.7% on average). Vibrio sp. was the most highly represented genus (7.1%), followed by Glaciecola (4.8%), Pseudoalteromonas (4.4%), and Colwellia (4.2%), in eggs and water across the sites. Routinely used iodine-based disinfectants slightly reduced the eggs' bacterial load but did not significantly change their composition. Site, species, and type of sample (eggs or water) drove the microbial community structure and influenced microbiome functional profiles. The egg and seawater microbiome composition differed in abundance but shared similar functional profiles. The strong impact of site and species on egg bacterial communities indicates that disease management needs to be site-specific and highlights the need for species- and site-specific optimization of disinfection protocols.

20.
Front Endocrinol (Lausanne) ; 12: 725022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34659116

RESUMEN

The allatostatins (ASTs), AST-A, AST-B and AST-C, have mainly been investigated in insects. They are a large group of small pleotropic alloregulatory neuropeptides that are unrelated in sequence and activate receptors of the rhodopsin G-protein coupled receptor family (GPCRs). The characteristics and functions of the homologue systems in the molluscs (Buccalin, MIP and AST-C-like), the second most diverse group of protostomes after the arthropods, and of high interest for evolutionary studies due to their less rearranged genomes remains to be explored. In the present study their evolution is deciphered in molluscs and putative functions assigned in bivalves through meta-analysis of transcriptomes and experiments. Homologues of the three arthropod AST-type peptide precursors were identified in molluscs and produce a larger number of mature peptides than in insects. The number of putative receptors were also distinct across mollusc species due to lineage and species-specific duplications. Our evolutionary analysis of the receptors identified for the first time in a mollusc, the cephalopod, GALR-like genes, which challenges the accepted paradigm that AST-AR/buccalin-Rs are the orthologues of vertebrate GALRs in protostomes. Tissue transcriptomes revealed the peptides, and their putative receptors have a widespread distribution in bivalves and in the bivalve Mytilus galloprovincialis, elements of the three peptide-receptor systems are highly abundant in the mantle an innate immune barrier tissue. Exposure of M. galloprovincialis to lipopolysaccharide or a marine pathogenic bacterium, Vibrio harveyi, provoked significant modifications in the expression of genes of the peptide precursor and receptors of the AST-C-like system in the mantle suggesting involvement in the immune response. Overall, our study reveals that homologues of the arthropod AST-systems in molluscs are potentially more complex due to the greater number of putative mature peptides and receptor genes. In bivalves they have a broad and varying tissue distribution and abundance, and the elements of the AST-C-like family may have a putative function in the immune response.


Asunto(s)
Exoesqueleto/inmunología , Evolución Biológica , Inmunidad Innata , Neuropéptidos/metabolismo , Receptores de Neuropéptido/metabolismo , Vibriosis/inmunología , Exoesqueleto/microbiología , Animales , Insectos , Moluscos , Neuropéptidos/genética , Filogenia , Receptores de Neuropéptido/genética , Transcriptoma , Vibrio/fisiología , Vibriosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...