Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 585(7825): 397-403, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32610343

RESUMEN

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Asunto(s)
Modelos Animales de Enfermedad , Proteína Proteolipídica de la Mielina/deficiencia , Enfermedad de Pelizaeus-Merzbacher/genética , Enfermedad de Pelizaeus-Merzbacher/terapia , Animales , Sistemas CRISPR-Cas , Femenino , Edición Génica , Hipoxia/metabolismo , Masculino , Ratones , Ratones Mutantes , Actividad Motora/genética , Proteína Proteolipídica de la Mielina/genética , Proteína Proteolipídica de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Mutación Puntual , Pruebas de Función Respiratoria , Análisis de Supervivencia
2.
Cell Stem Cell ; 12(6): 713-26, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23602540

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease, characterized by motor neuron (MN) death, for which there are no truly effective treatments. Here, we describe a new small molecule survival screen carried out using MNs from both wild-type and mutant SOD1 mouse embryonic stem cells. Among the hits we found, kenpaullone had a particularly impressive ability to prolong the healthy survival of both types of MNs that can be attributed to its dual inhibition of GSK-3 and HGK kinases. Furthermore, kenpaullone also strongly improved the survival of human MNs derived from ALS-patient-induced pluripotent stem cells and was more active than either of two compounds, olesoxime and dexpramipexole, that recently failed in ALS clinical trials. Our studies demonstrate the value of a stem cell approach to drug discovery and point to a new paradigm for identification and preclinical testing of future ALS therapeutics.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Células Madre Embrionarias/citología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Animales , Benzazepinas/química , Benzazepinas/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colestenonas/química , Colestenonas/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Indoles/química , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/enzimología , Mutación , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
3.
Proc Natl Acad Sci U S A ; 110(10): 4075-80, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431182

RESUMEN

Neurological diseases and trauma often cause demyelination, resulting in the disruption of axonal function and integrity. Endogenous remyelination promotes recovery, but the process is not well understood because no method exists to definitively distinguish regenerated from preexisting myelin. To date, remyelinated segments have been defined as anything abnormally short and thin, without empirical data to corroborate these morphological assumptions. To definitively identify regenerated myelin, we used a transgenic mouse with an inducible membrane-bound reporter and targeted Cre recombinase expression to a subset of glial progenitor cells after spinal cord injury, yielding remarkably clear visualization of spontaneously regenerated myelin in vivo. Early after injury, the mean length of sheaths regenerated by Schwann cells and oligodendrocytes (OLs) was significantly shorter than control, uninjured myelin, confirming past assumptions. However, OL-regenerated sheaths elongated progressively over 6 mo to approach control values. Moreover, OL-regenerated myelin thickness was not significantly different from control myelin at most time points after injury. Thus, many newly formed OL sheaths were neither thinner nor shorter than control myelin, vitiating accepted dogmas of what constitutes regenerated myelin. We conclude that remyelination, once thought to be static, is dynamic and elongates independently of axonal growth, in contrast to stretch-based mechanisms proposed in development. Further, without clear identification, past assessments have underestimated the extent and quality of regenerated myelin.


Asunto(s)
Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Axones/patología , Axones/fisiología , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/fisiopatología , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Transgénicos , Modelos Neurológicos , Vaina de Mielina/patología , Plasticidad Neuronal/fisiología , Oligodendroglía/patología , Oligodendroglía/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células de Schwann/patología , Células de Schwann/fisiología , Traumatismos de la Médula Espinal/patología
4.
J Neurosci ; 32(15): 5120-5, 2012 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-22496557

RESUMEN

Remyelination following spinal cord injury (SCI) is thought to be incomplete; demyelination is reported to persist chronically and is proposed as a compelling therapeutic target. Yet most reports do not distinguish between the myelin status of intact axons and injury-severed axons whose proximal stumps persist but provide no meaningful function. We previously found full remyelination of spared, intact rubrospinal axons caudal to the lesion in chronic mouse SCI. However, the clinical concept of chronically demyelinated spared axons remains controversial. Since mouse models may have limitations in clinical translation, we asked whether the capacity for full remyelination is conserved in clinically relevant chronic rat SCI. We determined myelin status by examining paranodal protein distribution on anterogradely labeled, intact corticospinal and rubrospinal axons throughout the extent of the lesion. Demyelination was evident on proximal stumps of severed axons, but not on intact axons. For the first time, we demonstrate that a majority of intact axons exhibit remyelination (at least one abnormally short internode, <100 µm). Remarkably, shortened internodes were significantly concentrated at the lesion epicenter and individual axons were thinned by 23% compared with their rostral and caudal zones. Mathematical modeling predicted a 25% decrease in conduction velocity at the lesion epicenter due to short internodes and axonal thinning. In conclusion, we do not find a large chronically demyelinated population to target with remyelination therapies. Interventions may be better focused on correcting structural or molecular abnormalities of regenerated myelin.


Asunto(s)
Axones/patología , Vaina de Mielina/patología , Traumatismos de la Médula Espinal/patología , Animales , Vértebras Cervicales/lesiones , Contusiones/patología , Enfermedades Desmielinizantes/patología , Femenino , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Locomoción/fisiología , Conducción Nerviosa/fisiología , Tractos Piramidales/patología , Conejos , Ratas , Programas Informáticos , Vértebras Torácicas/lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...