Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(4): e17274, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38605677

RESUMEN

Climate change and other anthropogenic disturbances are increasing liana abundance and biomass in many tropical and subtropical forests. While the effects of living lianas on species diversity, ecosystem carbon, and nutrient dynamics are receiving increasing attention, the role of dead lianas in forest ecosystems has been little studied and is poorly understood. Trees and lianas coexist as the major woody components of forests worldwide, but they have very different ecological strategies, with lianas relying on trees for mechanical support. Consequently, trees and lianas have evolved highly divergent stem, leaf, and root traits. Here we show that this trait divergence is likely to persist after death, into the afterlives of these organs, leading to divergent effects on forest biogeochemistry. We introduce a conceptual framework combining horizontal, vertical, and time dimensions for the effects of liana proliferation and liana tissue decomposition on ecosystem carbon and nutrient cycling. We propose a series of empirical studies comparing traits between lianas and trees to answer questions concerning the influence of trait afterlives on the decomposability of liana and tree organs. Such studies will increase our understanding of the contribution of lianas to terrestrial biogeochemical cycling, and help predict the effects of their increasing abundance.


Asunto(s)
Ecosistema , Clima Tropical , Bosques , Árboles , Carbono
2.
PLoS One ; 18(3): e0280322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36920898

RESUMEN

Uncertainties about controls on tree mortality make forest responses to land-use and climate change difficult to predict. We tracked biomass of tree functional groups in tropical forest inventories across Puerto Rico and the U.S. Virgin Islands, and with random forests we ranked 86 potential predictors of small tree survival (young or mature stems 2.5-12.6 cm diameter at breast height). Forests span dry to cloud forests, range in age, geology and past land use and experienced severe drought and storms. When excluding species as a predictor, top predictors are tree crown ratio and height, two to three species traits and stand to regional factors reflecting local disturbance and the system state (widespread recovery, drought, hurricanes). Native species, and species with denser wood, taller maximum height, or medium typical height survive longer, but short trees and species survive hurricanes better. Trees survive longer in older stands and with less disturbed canopies, harsher geoclimates (dry, edaphically dry, e.g., serpentine substrates, and highest-elevation cloud forest), or in intervals removed from hurricanes. Satellite image phenology and bands, even from past decades, are top predictors, being sensitive to vegetation type and disturbance. Covariation between stand-level species traits and geoclimate, disturbance and neighboring species types may explain why most neighbor variables, including introduced vs. native species, had low or no importance, despite univariate correlations with survival. As forests recovered from a hurricane in 1998 and earlier deforestation, small trees of introduced species, which on average have lighter wood, died at twice the rate of natives. After hurricanes in 2017, the total biomass of trees ≥12.7 cm dbh of the introduced species Spathodea campanulata spiked, suggesting that more frequent hurricanes might perpetuate this light-wooded species commonness. If hurricane recovery favors light-wooded species while drought favors others, climate change influences on forest composition and ecosystem services may depend on the frequency and severity of extreme climate events.


Asunto(s)
Tormentas Ciclónicas , Ecosistema , Biomasa , Madera , Especies Introducidas , Clima Tropical
3.
Proc Biol Sci ; 290(1990): 20222203, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36629117

RESUMEN

Abandonment of agricultural lands promotes the global expansion of secondary forests, which are critical for preserving biodiversity and ecosystem functions and services. Such roles largely depend, however, on two essential successional attributes, trajectory and recovery rate, which are expected to depend on landscape-scale forest cover in nonlinear ways. Using a multi-scale approach and a large vegetation dataset (843 plots, 3511 tree species) from 22 secondary forest chronosequences distributed across the Neotropics, we show that successional trajectories of woody plant species richness, stem density and basal area are less predictable in landscapes (4 km radius) with intermediate (40-60%) forest cover than in landscapes with high (greater than 60%) forest cover. This supports theory suggesting that high spatial and environmental heterogeneity in intermediately deforested landscapes can increase the variation of key ecological factors for forest recovery (e.g. seed dispersal and seedling recruitment), increasing the uncertainty of successional trajectories. Regarding the recovery rate, only species richness is positively related to forest cover in relatively small (1 km radius) landscapes. These findings highlight the importance of using a spatially explicit landscape approach in restoration initiatives and suggest that these initiatives can be more effective in more forested landscapes, especially if implemented across spatial extents of 1-4 km radius.


Asunto(s)
Ecosistema , Bosques , Biodiversidad , Árboles , Plantas
4.
New Phytol ; 237(3): 766-779, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36352518

RESUMEN

Tropical forests are often characterized by low soil phosphorus (P) availability, suggesting that P limits plant performance. However, how seedlings from different functional types respond to soil P availability is poorly known but important for understanding and modeling forest dynamics under changing environmental conditions. We grew four nitrogen (N)-fixing Fabaceae and seven diverse non-N-fixing tropical dry forest tree species in a shade house under three P fertilization treatments and evaluated carbon (C) allocation responses, P demand, P-use, investment in P acquisition traits, and correlations among P acquisition traits. Nitrogen fixers grew larger with increasing P addition in contrast to non-N fixers, which showed fewer responses in C allocation and P use. Foliar P increased with P addition for both functional types, while P acquisition strategies did not vary among treatments but differed between functional types, with N fixers showing higher root phosphatase activity (RPA) than nonfixers. Growth responses suggest that N fixers are limited by P, but nonfixers may be limited by other resources. However, regardless of limitation, P acquisition traits such as mycorrhizal colonization and RPA were nonplastic across a steep P gradient. Differential limitation among plant functional types has implications for forest succession and earth system models.


Asunto(s)
Nitrógeno , Árboles , Árboles/fisiología , Fósforo , Clima Tropical , Bosques , Plantas , Suelo
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210067, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373912

RESUMEN

Reforestation is one of our most promising natural climate solutions, and one that addresses the looming biodiversity crisis. Tree planting can catalyse forest community reassembly in degraded landscapes where natural regeneration is slow, however, tree survival rates vary remarkably across projects. Building a trait-based framework for tree survival could streamline species selection in a way that generalizes across ecosystems, thereby increasing the effectiveness of the global restoration movement. We investigated how traits mediated seedling survival in a tropical dry forest restoration, and how traits were coordinated across plant structures. We examined growth and survival of 14 species for 2 years and measured six below-ground and 22 above-ground traits. Species-level survival ranged widely from 7.8% to 90.1%, and a model including growth rate, below-ground traits and their interaction explained more than 73% of this variation. A strong interaction between below-ground traits and growth rate indicated that selecting species with fast growth rates can promote establishment, but this effect was most apparent for species that invest in thick fine roots and deep root structures. Overall, results emphasize the prominent role of below-ground traits in determining early restoration outcomes, and highlight little above- and below-ground trait coordination, providing a path forward for tropical dry forest restoration efforts. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Árboles , Bosques , Biodiversidad , Plantones , Clima Tropical
6.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210074, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373919

RESUMEN

The recovery of soil conditions is crucial for successful ecosystem restoration and, hence, for achieving the goals of the UN Decade on Ecosystem Restoration. Here, we assess how soils resist forest conversion and agricultural land use, and how soils recover during subsequent tropical forest succession on abandoned agricultural fields. Our overarching question is how soil resistance and recovery depend on local conditions such as climate, soil type and land-use history. For 300 plots in 21 sites across the Neotropics, we used a chronosequence approach in which we sampled soils from two depths in old-growth forests, agricultural fields (i.e. crop fields and pastures), and secondary forests that differ in age (1-95 years) since abandonment. We measured six soil properties using a standardized sampling design and laboratory analyses. Soil resistance strongly depended on local conditions. Croplands and sites on high-activity clay (i.e. high fertility) show strong increases in bulk density and decreases in pH, carbon (C) and nitrogen (N) during deforestation and subsequent agricultural use. Resistance is lower in such sites probably because of a sharp decline in fine root biomass in croplands in the upper soil layers, and a decline in litter input from formerly productive old-growth forest (on high-activity clays). Soil recovery also strongly depended on local conditions. During forest succession, high-activity clays and croplands decreased most strongly in bulk density and increased in C and N, possibly because of strongly compacted soils with low C and N after cropland abandonment, and because of rapid vegetation recovery in high-activity clays leading to greater fine root growth and litter input. Furthermore, sites at low precipitation decreased in pH, whereas sites at high precipitation increased in N and decreased in C : N ratio. Extractable phosphorus (P) did not recover during succession, suggesting increased P limitation as forests age. These results indicate that no single solution exists for effective soil restoration and that local site conditions should determine the restoration strategies. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Arcilla , Bosques , Carbono
8.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36257904

RESUMEN

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Asunto(s)
Sequías , Hojas de la Planta , Clima Tropical , Filogenia , Hojas de la Planta/fisiología , Xilema
9.
PLoS Biol ; 20(6): e3001674, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35709146

RESUMEN

Understanding tropical biology is important for solving complex problems such as climate change, biodiversity loss, and zoonotic pandemics, but biology curricula view research mostly via a temperate-zone lens. Integrating tropical research into biology education is urgently needed to tackle these issues.


Asunto(s)
Biodiversidad , Cambio Climático , Biología , Clima Tropical
10.
Proc Biol Sci ; 289(1976): 20220739, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703055

RESUMEN

The role of conspecific density dependence (CDD) in the maintenance of species richness is a central focus of tropical forest ecology. However, tests of CDD often ignore the integrated effects of CDD over multiple life stages and their long-term impacts on population demography. We combined a 10-year time series of seed production, seedling recruitment and sapling and tree demography of three dominant Southeast Asian tree species that adopt a mast-fruiting phenology. We used these data to construct individual-based models that examine the effects of CDD on population growth rates (λ) across life-history stages. Recruitment was driven by positive CDD for all species, supporting the predator satiation hypothesis, while negative CDD affected seedling and sapling growth of two species, significantly reducing λ. This negative CDD on juvenile growth overshadowed the positive CDD of recruitment, suggesting the cumulative effects of CDD during seedling and sapling development has greater importance than the positive CDD during infrequent masting events. Overall, CDD varied among positive, neutral and negative effects across life-history stages for all species, suggesting that assessments of CDD on transitions between just two stages (e.g. seeds seedlings or juveniles mature trees) probably misrepresent the importance of CDD on population growth and stability.


Asunto(s)
Bosques , Árboles , Demografía , Plantones , Semillas , Clima Tropical
11.
Nat Commun ; 13(1): 3332, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680917

RESUMEN

Lianas, or woody vines, and trees dominate the canopy of tropical forests and comprise the majority of tropical aboveground carbon storage. These growth forms respond differently to contemporary variation in climate and resource availability, but their responses to future climate change are poorly understood because there are very few predictive ecosystem models representing lianas. We compile a database of liana functional traits (846 species) and use it to parameterize a mechanistic model of liana-tree competition. The substantial difference between liana and tree hydraulic conductivity represents a critical source of inter-growth form variation. Here, we show that lianas are many times more sensitive to drying atmospheric conditions than trees as a result of this trait difference. Further, we use our competition model and projections of tropical hydroclimate based on Representative Concentration Pathway 4.5 to show that lianas are more susceptible to reaching a hydraulic threshold for viability by 2100.


Asunto(s)
Ecosistema , Clima Tropical , Bosques , Plantas , Árboles
12.
Annu Rev Plant Biol ; 73: 673-702, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35231182

RESUMEN

Recent observations of elevated tree mortality following climate extremes, like heat and drought, raise concerns about climate change risks to global forest health. We currently lack both sufficient data and understanding to identify whether these observations represent a global trend toward increasing tree mortality. Here, we document events of sudden and unexpected elevated tree mortality following heat and drought events in ecosystems that previously were considered tolerant or not at risk of exposure. These events underscore the fact that climate change may affect forests with unexpected force in the future. We use the events as examples to highlight current difficulties and challenges for realistically predicting such tree mortality events and the uncertainties about future forest condition. Advances in remote sensing technology and greater availably of high-resolution data, from both field assessments and satellites, are needed to improve both understanding and prediction of forest responses to future climate change.


Asunto(s)
Cambio Climático , Árboles , Sequías , Ecosistema , Bosques , Árboles/fisiología
13.
Glob Chang Biol ; 28(6): 2081-2094, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34921474

RESUMEN

Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R2  = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine-scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high-resolution remote sensing to "fingerprint" forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.


Asunto(s)
Sequías , Ecosistema , Biomasa , Bosques , Plantas , Árboles
15.
Science ; 374(6573): 1370-1376, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882461

RESUMEN

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (<1 decade) and plant functioning (<2.5 decades), intermediate for structure and species diversity (2.5 to 6 decades), and slowest for biomass and species composition (>12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation.

16.
New Phytol ; 232(1): 148-161, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171131

RESUMEN

Leaf habit has been hypothesized to define a linkage between the slow-fast plant economic spectrum and the drought resistance-avoidance trade-off in tropical forests ('slow-safe vs fast-risky'). However, variation in hydraulic traits as a function of leaf habit has rarely been explored for a large number of species. We sampled leaf and branch functional traits of 97 tropical dry forest tree species from four sites to investigate whether patterns of trait variation varied consistently in relation to leaf habit along the 'slow-safe vs fast-risky' trade-off. Leaf habit explained from 0% to 43.69% of individual trait variation. We found that evergreen and semi-deciduous species differed in their location along the multivariate trait ordination when compared to deciduous species. While deciduous species showed consistent trait values, evergreen species trait values varied as a function of the site. Last, trait values varied in relation to the proportion of deciduous species in the plant community. We found that leaf habit describes the strategies that define drought avoidance and plant economics in tropical trees. However, leaf habit alone does not explain patterns of trait variation, which suggests quantifying site-specific or species-specific uncertainty in trait variation as the way forward.


Asunto(s)
Árboles , Clima Tropical , Bosques , Hábitos , Hojas de la Planta
17.
J Ecol ; 109(1): 519-540, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33536686

RESUMEN

Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long-term carbon sequestration.Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour-intensive and ecosystem-scale manipulation experiments, which are infeasible in most situations.We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process-based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana-infested forests. Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process-based vegetation model.

18.
Ecology ; 101(12): e03176, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32870500

RESUMEN

The spatial habitat heterogeneity hypothesis posits that habitat complexity increases the abundance and diversity of species. In tropical forests, lianas add substantial habitat heterogeneity and complexity throughout the vertical forest profile, which may maintain animal abundance and diversity. The effects of lianas on tropical animal communities, however, remain poorly understood. We propose that lianas have a positive effect on animals by enhancing habitat complexity. Lianas may have a particularly strong influence on the forest bird community, providing nesting substrate, protection from predators, and nutrition (food). Understory insectivorous birds, which forage for insects that specialize on lianas, may particularly benefit. Alternatively, it is possible that lianas have a negative effect on forest birds by increasing predator abundances and providing arboreal predators with travel routes with easy access to bird nests. We tested the spatial habitat heterogeneity hypothesis on bird abundance and diversity by removing lianas, thus reducing forest complexity, using a large-scale experimental approach in a lowland tropical forest in the Republic of Panama. We found that removing lianas decreased total bird abundance by 78.4% and diversity by 77.4% after 8 months, and by 40.0% and 51.7%, respectively, after 20 months. Insectivorous bird abundance and diversity 8 months after liana removal were 91.8% and 89.5% lower, respectively, indicating that lianas positively influence insectivorous birds. The effects of liana removal persisted longer for insectivorous birds than other birds, with 77.3% lower abundance and 76.2% lower diversity after 20 months. Liana removal also altered bird community composition, creating two distinct communities in the control and removal plots, with disproportionate effects on insectivores. Our findings demonstrate that lianas have a strong positive influence on the bird community, particularly for insectivorous birds in the forest understory. Lianas may maintain bird abundance and diversity by increasing habitat complexity, habitat heterogeneity, and resource availability.


Asunto(s)
Bosques , Clima Tropical , Animales , Aves , Ecosistema , Panamá , Árboles
19.
Am J Bot ; 107(6): 886-894, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32500611

RESUMEN

PREMISE: Clouds have profound consequences for ecosystem structure and function. Yet, the direct monitoring of clouds and their effects on biota is challenging especially in remote and topographically complex tropical cloud forests. We argue that known relationships between climate and the taxonomic and functional composition of plant communities may provide a fingerprint of cloud base height, thus providing a rapid and cost-effective assessment in remote tropical cloud forests. METHODS: To detect cloud base height, we compared species turnover and functional trait values among herbaceous and woody plant communities in an ecosystem dominated by cloud formation. We measured soil and air temperature, soil nutrient concentrations, and extracellular enzyme activity. We hypothesized that woody and herbaceous plants would provide signatures of cloud base height, as evidenced by abrupt shifts in both taxonomic composition and plant function. RESULTS: We demonstrated abrupt changes in taxonomic composition and the community- weighted mean of a key functional trait, specific leaf area, across elevation for both woody and herbaceous species, consistent with our predictions. However, abrupt taxonomic and functional changes occurred 100 m higher in elevation for herbaceous plants compared to woody ones. Soil temperature abruptly decreased where herbaceous taxonomic and functional turnover was high. Other environmental variables including soil biogeochemistry did not explain the abrupt change observed for woody plant communities. CONCLUSIONS: We provide evidence that a trait-based approach can be used to estimate cloud base height. We outline how rises in cloud base height and differential environmental requirements between growth forms can be distinguished using this approach.


Asunto(s)
Ecosistema , Bosques , Clima , Plantas , Suelo , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...