Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 126: 102440, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37290887

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 µg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.


Asunto(s)
Cianobacterias , Microbiota , Microcystis , Humanos , Microcystis/genética , Lagos/microbiología , Cianobacterias/genética , Variación Genética
2.
J Magn Reson ; 347: 107365, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36634594

RESUMEN

Robust annotation of metabolites is a challenging task in metabolomics. Among available applications, 13C NMR experiment INADEQUATE determines direct 13C-13C connectivity unambiguously, offering indispensable information on molecular structure. Despite its great utility, it is not always practical to collect INADEQUATE data on every sample in a large metabolomics study because of its relatively long experiment time. Here, we propose an alternative approach that maintains the quality of information but saves experiment time. In this approach, individual samples in a study are first screened by 13C homonuclear J-resolved experiment (JRES). Next, JRES data are processed by statistical total correlation spectroscopy (STOCSY) to extract peaks that behave similarly among samples. Finally, INADEQUATE is collected on one internal pooled sample to select STOCSY peaks that originate from the same compound. We tested this concept using the 13C-labeled endometabolome of a model marine diatom strain incubated under various settings, intending to cover a range of metabolites produced under different external conditions. This scheme was able to extract known diatom metabolites proline, 2,3-dihydroxypropane-1-sulfonate (DHPS), ß-1,3-glucan, choline, and glutamate. This pipeline also detected unknown compounds with structural information, which is valuable in metabolomics where a priori knowledge of metabolites is not always available. The ability of this scheme was seen even in sugar regions, which are usually challenging in 1H NMR due to severe peak overlap. JRES and INADEQUATE were highly complementary; INADEQUATE provided directly-bonded 13C networks, whereas JRES linked INADEQUATE networks within the same compound but broken by nitrogen or sulfur atoms, highlighting the advantage of this integrated approach.


Asunto(s)
Imagen por Resonancia Magnética , Metabolómica , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos
4.
Environ Microbiol ; 23(12): 7278-7313, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34056822

RESUMEN

Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.


Asunto(s)
Cianobacterias , Microcystis , Ecosistema , Microcystis/genética
5.
Environ Microbiol ; 23(6): 3020-3036, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33830633

RESUMEN

Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacterium Microcystis causes toxic blooms that threaten freshwater ecosystems and human health globally. Microcystis grows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions with Microcystis are not well characterized. To identify the taxa and compositional variance within Microcystis phycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individual Microcystis colonies collected biweekly via high-throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. The Microcystis phycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked 'core' taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and the Microcystis 16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved with Microcystis of a single oligotype or sampling date. Together, this suggests that physiological differences between Microcystis strains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of the Microcystis phycosphere.


Asunto(s)
Cianobacterias , Microbiota , Microcystis , Cianobacterias/genética , Lagos , Microbiota/genética , Microcystis/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...