Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(4): 738-753, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38168972

RESUMEN

Using a minimal hydrodynamic model, we theoretically and computationally study the Couette flow of active gels in straight and annular two-dimensional channels subject to an externally imposed shear. The gels are isotropic in the absence of externally- or activity-driven shear, but have nematic order that increases with shear rate. Using the finite element method, we determine the possible flow states for a range of activities and shear rates. Linear stability analysis of an unconfined gel in a straight channel shows that an externally imposed shear flow can stabilize an extensile fluid that would be unstable to spontaneous flow in the absence of the shear flow, and destabilize a contractile fluid that would be stable against spontaneous flow in the absence of shear flow. These results are in rough agreement with the stability boundaries between the base shear flow state and the nonlinear flow states that we find numerically for a confined active gel. For extensile fluids, we find three kinds of nonlinear flow states in the range of parameters we study: unidirectional flows, oscillatory flows, and dancing flows. To highlight the activity-driven spontaneous component of the nonlinear flows, we characterize these states by the average volumetric flow rate and the wall stress. For contractile fluids, we only find the linear shear flow and a nonlinear unidirectional flow in the range of parameters that we studied. For large magnitudes of the activity, the unidirectional contractile flow develops a boundary layer. Our analysis of annular channels shows how curvature of the streamlines in the base flow affects the transitions among flow states.

2.
Soft Matter ; 19(43): 8453-8464, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37882610

RESUMEN

We carry out Monte Carlo simulations on fluid membranes with orientational order and multiple edges in the presence and absence of external forces. The membrane resists bending and has an edge tension, the orientational order couples with the membrane surface normal through a cost for tilting, and there is a chiral liquid crystalline interaction. In the absence of external forces, a membrane initialized as a vesicle will form a disk at low chirality, with the directors forming a smectic-A phase with alignment perpendicular to the membrane surface except near the edge. At large chirality a catenoid-like shape or a trinoid-like shape is formed, depending on the number of edges in the initial vesicle. This shape change is accompanied by cholesteric ordering of the directors and multiple π walls connecting the membrane edges and wrapping around the membrane neck. If the membrane is initialized instead in a cylindrical shape and stretched by an external force, it maintains a nearly cylindrical shape but additional liquid crystalline phases appear. For large tilt coupling and low chirality, a smectic-A phase forms where the directors are normal to the surface of the membrane. For lower values of the tilt coupling, a nematic phase appears at zero chirality with the average director oriented perpendicular to the long axis of the membrane, while for nonzero chirality a cholesteric phase appears. The π walls are tilt walls at low chirality and transition to twist walls as chirality is increased. We construct a continuum model of the director field to explain this behavior.

3.
Proc Natl Acad Sci U S A ; 119(32): e2204453119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914159

RESUMEN

Changes in the geometry and topology of self-assembled membranes underlie diverse processes across cellular biology and engineering. Similar to lipid bilayers, monolayer colloidal membranes have in-plane fluid-like dynamics and out-of-plane bending elasticity. Their open edges and micrometer-length scale provide a tractable system to study the equilibrium energetics and dynamic pathways of membrane assembly and reconfiguration. Here, we find that doping colloidal membranes with short miscible rods transforms disk-shaped membranes into saddle-shaped surfaces with complex edge structures. The saddle-shaped membranes are well approximated by Enneper's minimal surfaces. Theoretical modeling demonstrates that their formation is driven by increasing the positive Gaussian modulus, which in turn, is controlled by the fraction of short rods. Further coalescence of saddle-shaped surfaces leads to diverse topologically distinct structures, including shapes similar to catenoids, trinoids, four-noids, and higher-order structures. At long timescales, we observe the formation of a system-spanning, sponge-like phase. The unique features of colloidal membranes reveal the topological transformations that accompany coalescence pathways in real time. We enhance the functionality of these membranes by making their shape responsive to external stimuli. Our results demonstrate a pathway toward control of thin elastic sheets' shape and topology-a pathway driven by the emergent elasticity induced by compositional heterogeneity.


Asunto(s)
Membrana Dobles de Lípidos , Elasticidad , Membrana Dobles de Lípidos/química , Membranas/metabolismo , Distribución Normal
4.
Soft Matter ; 17(31): 7268-7286, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34319333

RESUMEN

We use theory and numerical computation to determine the shape of an axisymmetric fluid membrane with a resistance to bending and constant area. The membrane connects two rings in the classic geometry that produces a catenoidal shape in a soap film. In our problem, we find infinitely many branches of solutions for the shape and external force as functions of the separation of the rings, analogous to the infinite family of eigenmodes for the Euler buckling of a slender rod. Special attention is paid to the catenoid, which emerges as the shape of maximal allowable separation when the area is less than a critical area equal to the planar area enclosed by the two rings. A perturbation theory argument directly relates the tension of catenoidal membranes to the stability of catenoidal soap films in this regime. When the membrane area is larger than the critical area, we find additional cylindrical tether solutions to the shape equations at large ring separation, and that arbitrarily large ring separations are possible. These results apply for the case of vanishing Gaussian curvature modulus; when the Gaussian curvature modulus is nonzero and the area is below the critical area, the force and the membrane tension diverge as the ring separation approaches its maximum value. We also examine the stability of our shapes and analytically show that catenoidal membranes have markedly different stability properties than their soap film counterparts.

5.
Soft Matter ; 17(27): 6580-6588, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34160539

RESUMEN

Motivated by experiments on colloidal membranes composed of chiral rod-like viruses, we use Monte Carlo methods to simulate these systems and determine the phase diagram for the liquid crystalline order of the rods and the membrane shape. We generalize the Lebwohl-Lasher model for a nematic with a chiral coupling to a curved surface with edge tension and a resistance to bending, and include an energy cost for tilting of the rods relative to the local membrane normal. The membrane is represented by a triangular mesh of hard beads joined by bonds, where each bead is decorated by a director. The beads can move, the bonds can reconnect and the directors can rotate at each Monte Carlo step. When the cost of tilt is small, the membrane tends to be flat, with the rods only twisting near the edge for low chiral coupling, and remaining parallel to the normal in the interior of the membrane. At high chiral coupling, the rods twist everywhere, forming a cholesteric state. When the cost of tilt is large, the emergence of the cholesteric state at high values of the chiral coupling is accompanied by the bending of the membrane into a saddle shape. Increasing the edge tension tends to flatten the membrane. These results illustrate the geometric frustration arising from the inability of a surface normal to have twist.

6.
Phys Rev E ; 102(3-1): 032608, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33075976

RESUMEN

We carry out Monte Carlo simulations of a colloidal fluid membrane with a free edge and composed of chiral rodlike viruses. The membrane is modeled by a triangular mesh of beads connected by bonds in which the bonds and beads are free to move at each Monte Carlo step. Since the constituent viruses are experimentally observed to twist only near the membrane edge, we use an effective energy that favors a particular sign of the geodesic torsion of the edge. The effective energy also includes the membrane bending stiffness, edge bending stiffness, and edge tension. We find three classes of membrane shapes resulting from the competition of the various terms in the free energy: branched shapes, chiral disks, and vesicles. Increasing the edge bending stiffness smooths the membrane edge, leading to correlations among the membrane normals at different points along the edge. The normalized power spectrum for edge displacements shows a peak with increasing preferred geodesic torsion. We also consider membrane shapes under an external force by fixing the distance between two ends of the membrane and finding the shape for increasing values of the distance between the two ends. As the distance increases, the membrane twists into a ribbon, with the force eventually reaching a plateau.

7.
Phys Rev Lett ; 125(1): 018002, 2020 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32678628

RESUMEN

We demonstrate that an achiral stretching force transforms disk-shaped colloidal membranes composed of chiral rods into twisted ribbons with handedness opposite the preferred twist of the rods. Using an experimental technique that enforces torque-free boundary conditions we simultaneously measure the force-extension curve and the ribbon shape. An effective theory that accounts for the membrane bending energy and uses geometric properties of the edge to model the internal liquid crystalline degrees of freedom explains both the measured force-extension curve and the force-induced twisted shape.

8.
Science ; 367(6482): 1120-1124, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32139540

RESUMEN

Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, charge-neutral disclination loops that undergo complex dynamics and recombination events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms.

9.
Soft Matter ; 15(31): 6318-6330, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31322161

RESUMEN

We study the linear stability of an isotropic active fluid in three different geometries: a film of active fluid on a rigid substrate, a cylindrical thread of fluid, and a spherical fluid droplet. The active fluid is modeled by the hydrodynamic theory of an active nematic liquid crystal in the isotropic phase. In each geometry, we calculate the growth rate of sinusoidal modes of deformation of the interface. There are two distinct branches of growth rates; at long wavelength, one corresponds to the deformation of the interface, and one corresponds to the evolution of the liquid crystalline degrees of freedom. The passive cases of the film and the spherical droplet are always stable. For these geometries, a sufficiently large activity leads to instability. Activity also leads to propagating damped or growing modes. The passive cylindrical thread is unstable for perturbations with wavelength longer than the circumference. A sufficiently large activity can make any wavelength unstable, and again leads to propagating damped or growing modes. Our calculations are carried out for the case of zero Frank elasticity. While Frank elasticity is a stabilizing mechanism as it penalizes distortions of the order parameter tensor, we show that it has a small effect on the instabilities considered here.

10.
Phys Rev Lett ; 121(17): 178002, 2018 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-30411941

RESUMEN

We study a swimming undulating sheet in the isotropic phase of an active nematic liquid crystal. Activity changes the effective shear viscosity, reducing it to zero at a critical value of activity. Expanding in the sheet amplitude, we find that the correction to the swimming speed due to activity is inversely proportional to the effective shear viscosity. Our perturbative calculation becomes invalid near the critical value of activity; using numerical methods to probe this regime, we find that activity enhances the swimming speed by an order of magnitude compared to the passive case.

11.
Phys Rev E ; 95(6-1): 060701, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709244

RESUMEN

We study edge fluctuations of a flat colloidal membrane comprised of a monolayer of aligned filamentous viruses. Experiments reveal that a peak in the spectrum of the in-plane edge fluctuations arises for sufficiently strong virus chirality. Accounting for internal liquid crystalline degrees of freedom by the length, curvature, and geodesic torsion of the edge, we calculate the spectrum of the edge fluctuations. The theory quantitatively describes the experimental data, demonstrating that chirality couples in-plane and out-of-plane edge fluctuations to produce the peak.


Asunto(s)
Coloides/metabolismo , Modelos Teóricos , Coloides/química , Cristales Líquidos/química , Propiedades de Superficie , Virus/química , Virus/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(17): E3376-E3384, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28411214

RESUMEN

In the presence of a nonadsorbing polymer, monodisperse rod-like particles assemble into colloidal membranes, which are one-rod-length-thick liquid-like monolayers of aligned rods. Unlike 3D edgeless bilayer vesicles, colloidal monolayer membranes form open structures with an exposed edge, thus presenting an opportunity to study elasticity of fluid sheets. Membranes assembled from single-component chiral rods form flat disks with uniform edge twist. In comparison, membranes composed of a mixture of rods with opposite chiralities can have the edge twist of either handedness. In this limit, disk-shaped membranes become unstable, instead forming structures with scalloped edges, where two adjacent lobes with opposite handedness are separated by a cusp-shaped point defect. Such membranes adopt a 3D configuration, with cusp defects alternatively located above and below the membrane plane. In the achiral regime, the cusp defects have repulsive interactions, but away from this limit we measure effective long-ranged attractive binding. A phenomenological model shows that the increase in the edge energy of scalloped membranes is compensated by concomitant decrease in the deformation energy due to Gaussian curvature associated with scalloped edges, demonstrating that colloidal membranes have positive Gaussian modulus. A simple excluded volume argument predicts the sign and magnitude of the Gaussian curvature modulus that is in agreement with experimental measurements. Our results provide insight into how the interplay between membrane elasticity, geometrical frustration, and achiral symmetry breaking can be used to fold colloidal membranes into 3D shapes.

13.
Phys Rev E ; 95(2-1): 022702, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28297876

RESUMEN

Thin fluid membranes embedded in a bulk fluid of different viscosity are of fundamental interest as experimental realizations of quasi-two-dimensional fluids and as models of biological membranes. We have probed the hydrodynamics of thin fluid membranes by active microrheology using small tracer particles to observe the highly anisotropic flow fields generated around a rigid oscillating post inserted into a freely suspended smectic liquid crystal film that is surrounded by air. In general, at distances more than a few Saffman lengths from the meniscus around the post, the measured velocities are larger than the flow computed by modeling a moving disklike inclusion of finite extent by superposing Levine-MacKintosh response functions for pointlike inclusions in a viscous membrane. The observed discrepancy is attributed to additional coupling of the film with the air below the film that is displaced directly by the shaft of the moving post.

14.
Phys Rev E ; 94(5-1): 052701, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27967127

RESUMEN

Hydrodynamic interactions play an important role in biological processes in cellular membranes, a large separation of length scales often allowing such membranes to be treated as continuous, two-dimensional (2D) fluids. We study experimentally and theoretically the hydrodynamic interaction of pairs of inclusions in two-dimensional, fluid smectic liquid crystal films suspended in air. Such smectic membranes are ideal systems for performing controlled experiments as they are mechanically stable, of highly uniform structure, and have well-defined, variable thickness, enabling experimental investigation of the crossover from 2D to 3D hydrodynamics. Our theoretical model generalizes the Levine-MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent. We describe in detail the theoretical and computational approach previously outlined in Z. Qi et al., Phys. Rev. Lett. 113, 128304 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.128304 and extend the method to study the mutual mobilities of inclusions with asymmetric shapes. The model predicts well the observed mutual mobilities of pairs of circular inclusions in films and the self-mobility of a circular inclusion in the vicinity of a linear boundary.

15.
Phys Rev E ; 94(1-1): 012701, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27575192

RESUMEN

Wrinkles commonly develop in a thin film deposited on a soft elastomer substrate when the film is subject to compression. Motivated by recent experiments [Agrawal et al., Soft Matter 8, 7138 (2012)]1744-683X10.1039/c2sm25734c that show how wrinkle morphology can be controlled by using a nematic elastomer substrate, we develop the theory of small-amplitude wrinkles of an isotropic film atop a nematic elastomer. The directors of the nematic elastomer are initially uniform. For uniaxial compression of the film along the direction perpendicular to the elastomer directors, the system behaves as a compressed film on an isotropic substrate. When the uniaxial compression is along the direction of nematic order, we find that the soft elasticity characteristic of liquid-crystal elastomers leads to a critical stress for wrinkling which is very small compared to the case of an isotropic substrate. We also determine the wavelength of the wrinkles at the critical stress and show how the critical stress and wavelength depend on substrate depth and the anisotropy of the polymer chains in the nematic elastomer.

16.
Eur Phys J E Soft Matter ; 38(8): 94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26314259

RESUMEN

When a microorganism begins swimming from rest in a Newtonian fluid such as water, it rapidly attains its steady-state swimming speed since changes in the velocity field spread quickly when the Reynolds number is small. However, swimming microorganisms are commonly found or studied in complex fluids. Because these fluids have long relaxation times, the time to attain the steady-state swimming speed can also be long. In this article we study the swimming startup problem in the simplest liquid crystalline fluid: a two-dimensional hexatic liquid crystal film. We study the dependence of startup time on anchoring strength and Ericksen number, which is the ratio of viscous to elastic stresses. For strong anchoring, the fluid flow starts up immediately but the liquid crystal field and swimming velocity attain their sinusoidal steady-state values after a time proportional to the relaxation time of the liquid crystal. When the Ericksen number is high, the behavior is the same as in the strong-anchoring case for any anchoring strength. We also find that the startup time increases with the ratio of the rotational viscosity to the shear viscosity, and then ultimately saturates once the rotational viscosity is much greater than the shear viscosity.


Asunto(s)
Hidrodinámica , Cristales Líquidos/química , Modelos Teóricos , Elasticidad , Rotación , Viscosidad
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 052503, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25493806

RESUMEN

The swimming behavior of bacteria and other microorganisms is sensitive to the physical properties of the fluid in which they swim. Mucus, biofilms, and artificial liquid-crystalline solutions are all examples of fluids with some degree of anisotropy that are also commonly encountered by bacteria. In this article, we study how liquid-crystalline order affects the swimming behavior of a model swimmer. The swimmer is a one-dimensional version of G. I. Taylor's swimming sheet: an infinite line undulating with small-amplitude transverse or longitudinal traveling waves. The fluid is a two-dimensional hexatic liquid-crystalline film. We calculate the power dissipated, swimming speed, and flux of fluid entrained as a function of the swimmer's wave form as well as properties of the hexatic film, such as the rotational and shear viscosity, the Frank elastic constant, and the anchoring strength. The departure from isotropic behavior is greatest for large rotational viscosity and weak anchoring boundary conditions on the orientational order at the swimmer surface. We even find that if the rotational viscosity is large enough, the transverse-wave swimmer moves in the opposite direction relative to a swimmer in an isotropic fluid.

18.
Phys Rev Lett ; 113(12): 128304, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25279649

RESUMEN

We study experimentally and theoretically the hydrodynamic interaction of pairs of circular inclusions in two-dimensional, fluid smectic membranes suspended in air. By analyzing their Brownian motion, we find that the radial mutual mobilities of identical inclusions are independent of their size but that the angular coupling becomes strongly size dependent when their radius exceeds a characteristic hydrodynamic length. These observations are described well for arbitrary inclusion separations by a model that generalizes the Levine-MacKintosh theory of point-force response functions and uses a boundary-element approach to calculate the mobility matrix for inclusions of finite extent.


Asunto(s)
Cristales Líquidos/química , Modelos Químicos , Compuestos de Bifenilo/química , Difusión , Hidrodinámica , Membranas Artificiales , Nitrilos/química , Reología , Aceites de Silicona/química , Sustancias Viscoelásticas/química
19.
Proc Natl Acad Sci U S A ; 111(31): 11252-6, 2014 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-25053810

RESUMEN

We resolve the 3D trajectory and the orientation of individual cells for extended times, using a digital tracking technique combined with 3D reconstructions. We have used this technique to study the motility of the uniflagellated bacterium Caulobacter crescentus and have found that each cell displays two distinct modes of motility, depending on the sense of rotation of the flagellar motor. In the forward mode, when the flagellum pushes the cell, the cell body is tilted with respect to the direction of motion, and it precesses, tracing out a helical trajectory. In the reverse mode, when the flagellum pulls the cell, the precession is smaller and the cell has a lower translation distance per rotation period and thus a lower motility. Using resistive force theory, we show how the helical motion of the cell body generates thrust and can explain the direction-dependent changes in swimming motility. The source of the cell body precession is believed to be associated with the flexibility of the hook that connects the flagellum to the cell body.


Asunto(s)
Caulobacter crescentus/citología , Fenómenos Biofísicos , Hidrodinámica , Microscopía , Modelos Biológicos , Movimiento
20.
Biophys J ; 106(1): 106-13, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24411242

RESUMEN

Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.


Asunto(s)
Modelos Biológicos , Paramecium caudatum/fisiología , Cilios/fisiología , Campos Magnéticos , Movimiento , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...