Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 2: 15024, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26207258

RESUMEN

Recombinant adeno-associated viruses (rAAV) are promising candidates for gene therapy approaches. The last two decades were particularly fruitful in terms of processes applied in the production and purification of this type of gene transfer vectors. This rapid technological evolution led to better yields and higher levels of vector purity. Recently, some reports showed that rAAV produced by transient tri-transfection method in adherent human embryonic kidney 293 cells can be harvested directly from supernatant, leading to easier and faster purification compared to classical virus extraction from cell pellets. Here, we compare these approaches with new vector recovery method using small quantity of detergent at the initial clarification step to treat the whole transfected cell culture. Coupled with tangential flow filtration and iodixanol-based isopycnic density gradient, this new method significantly increases rAAV yields and conserves high vector purity. Moreover, this approach leads to the reduction of the total process duration. Finally, the vectors maintain their functionality, showing unexpected higher in vitro and in vivo transduction efficacies. This new development in rAAV downstream process once more demonstrates the great capacity of these vectors to easily accommodate to large panel of methods, able to furthermore ameliorate their safety, functionality, and scalability.

2.
Hum Mol Genet ; 24(14): 4049-60, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25904108

RESUMEN

The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Musculares/genética , Precursores del ARN/genética , Empalmosomas/genética , Trans-Empalme , Animales , Células Cultivadas , Biología Computacional , Disferlina , Humanos , Intrones , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofia Muscular de Cinturas/genética , Mioblastos/citología , Mioblastos/metabolismo , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , Empalmosomas/metabolismo
3.
J Cell Biol ; 205(3): 377-93, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24798732

RESUMEN

The ubiquitous clathrin heavy chain (CHC), the main component of clathrin-coated vesicles, is well characterized for its role in intracellular membrane traffic and endocytosis from the plasma membrane (PM). Here, we demonstrate that in skeletal muscle CHC regulates the formation and maintenance of PM-sarcomere attachment sites also known as costameres. We show that clathrin forms large coated lattices associated with actin filaments and the muscle-specific isoform of α-actinin at the PM of differentiated myotubes. Depletion of CHC in myotubes induced a loss of actin and α-actinin sarcomeric organization, whereas CHC depletion in vivo induced a loss of contractile force due to the detachment of sarcomeres from the PM. Our results suggest that CHC contributes to the formation and maintenance of the contractile apparatus through interactions with costameric proteins and highlight an unconventional role for CHC in skeletal muscle that may be relevant to pathophysiology of neuromuscular disorders.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Cadenas Pesadas de Clatrina/metabolismo , Costameras/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sarcómeros/metabolismo , Células 3T3 , Actinina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Cadenas Pesadas de Clatrina/genética , Costameras/patología , Proteínas de Unión al ADN/metabolismo , Dependovirus/genética , Dinamina II/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos , Contracción Muscular , Fibras Musculares Esqueléticas/patología , Fuerza Muscular , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Distrofias Musculares/fisiopatología , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/fisiopatología , Sarcómeros/patología , Factores de Tiempo
4.
Mol Ther Nucleic Acids ; 2: e102, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23820890

RESUMEN

RNA trans-splicing has been explored as a therapeutic option for a variety of genetic diseases, but not for cardiac genetic disease. Hypertrophic cardiomyopathy (HCM) is an autosomal-dominant disease, characterized by left ventricular hypertrophy (LVH) and diastolic dysfunction. MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C) is frequently mutated. We evaluated the 5'-trans-splicing strategy in a mouse model of HCM carrying a Mybpc3 mutation. 5'-trans-splicing was induced between two independently transcribed molecules, the mutant endogenous Mypbc3 pre-mRNA and an engineered pre-trans-splicing molecule (PTM) carrying a FLAG-tagged wild-type (WT) Mybpc3 cDNA sequence. PTMs were packaged into adeno-associated virus (AAV) for transduction of cultured cardiac myocytes and the heart in vivo. Full-length repaired Mybpc3 mRNA represented up to 66% of total Mybpc3 transcripts in cardiac myocytes and 0.14% in the heart. Repaired cMyBP-C protein was detected by immunoprecipitation in cells and in vivo and exhibited correct incorporation into the sarcomere in cardiac myocytes. This study provides (i) the first evidence of successful 5'-trans-splicing in vivo and (ii) proof-of-concept of mRNA repair in the most prevalent cardiac genetic disease. Since current therapeutic options for HCM only alleviate symptoms, these findings open new horizons for causal therapy of the severe forms of the disease.Molecular Therapy-Nucleic Acids (2013) 2, e102; doi:10.1038/mtna.2013.31; published online 2 July 2013.

5.
Nucleic Acids Res ; 41(17): 8391-402, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23861443

RESUMEN

RNA-based therapeutic approaches using splice-switching oligonucleotides have been successfully applied to rescue dystrophin in Duchenne muscular dystrophy (DMD) preclinical models and are currently being evaluated in DMD patients. Although the modular structure of dystrophin protein tolerates internal deletions, many mutations that affect nondispensable domains of the protein require further strategies. Among these, trans-splicing technology is particularly attractive, as it allows the replacement of any mutated exon by its normal version as well as introducing missing exons or correcting duplication mutations. We have applied such a strategy in vitro by using cotransfection of pre-trans-splicing molecule (PTM) constructs along with a reporter minigene containing part of the dystrophin gene harboring the stop-codon mutation found in the mdx mouse model of DMD. Optimization of the different functional domains of the PTMs allowed achieving accurate and efficient trans-splicing of up to 30% of the transcript encoded by the cotransfected minigene. Optimized parameters included mRNA stabilization, choice of splice site sequence, inclusion of exon splice enhancers and artificial intronic sequence. Intramuscular delivery of adeno-associated virus vectors expressing PTMs allowed detectable levels of dystrophin in mdx and mdx4Cv, illustrating that a given PTM can be suitable for a variety of mutations.


Asunto(s)
Distrofina/genética , Trans-Empalme , Animales , Dependovirus/genética , Distrofina/análisis , Exones , Vectores Genéticos , Genotipo , Humanos , Intrones , Ratones , Ratones Endogámicos mdx , Fibras Musculares Esqueléticas/química , Músculos/química , Distrofia Muscular de Duchenne/genética , Células 3T3 NIH , Sitios de Empalme de ARN , ARN Mensajero/análisis
6.
Mol Ther ; 21(8): 1551-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23752313

RESUMEN

In the context of future adeno-associated viral (AAV)-based clinical trials for Duchenne myopathy, AAV genome fate in dystrophic muscles is of importance considering the viral capsid immunogenicity that prohibits recurring treatments. We showed that AAV genomes encoding non-therapeutic U7 were lost from mdx dystrophic muscles within 3 weeks after intramuscular injection. In contrast, AAV genomes encoding U7ex23 restoring expression of a slightly shortened dystrophin were maintained endorsing that the arrest of the dystrophic process is crucial for maintaining viral genomes in transduced fibers. Indeed, muscles treated with low doses of AAV-U7ex23, resulting in sub-optimal exon skipping, displayed much lower titers of viral genomes, showing that sub-optimal dystrophin restoration does not prevent AAV genome loss. We also followed therapeutic viral genomes in severe dystrophic dKO mice over time after systemic treatment with scAAV9-U7ex23. Dystrophin restoration decreased significantly between 3 and 12 months in various skeletal muscles, which was correlated with important viral genome loss, except in the heart. Altogether, these data show that the success of future AAV-U7 therapy for Duchenne patients would require optimal doses of AAV-U7 to induce substantial levels of dystrophin to stabilize the treated fibers and maintain the long lasting effect of the treatment.


Asunto(s)
Empalme Alternativo , Dependovirus/genética , Vectores Genéticos/genética , Genoma Viral , Distrofia Muscular Animal/genética , Distrofia Muscular de Duchenne/genética , ARN Nuclear Pequeño/genética , Animales , Cardiotoxinas/farmacología , Dependovirus/metabolismo , Distrofina/genética , Distrofina/metabolismo , Exones , Expresión Génica , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/metabolismo , Humanos , Inyecciones Intramusculares , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia
7.
EMBO Mol Med ; 5(7): 1128-45, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23716398

RESUMEN

Exon skipping mediated by antisense oligoribonucleotides (AON) is a promising therapeutic approach for genetic disorders, but has not yet been evaluated for cardiac diseases. We investigated the feasibility and efficacy of viral-mediated AON transfer in a Mybpc3-targeted knock-in (KI) mouse model of hypertrophic cardiomyopathy (HCM). KI mice carry a homozygous G>A transition in exon 6, which results in three different aberrant mRNAs. We identified an alternative variant (Var-4) deleted of exons 5-6 in wild-type and KI mice. To enhance its expression and suppress aberrant mRNAs we designed AON-5 and AON-6 that mask splicing enhancer motifs in exons 5 and 6. AONs were inserted into modified U7 small nuclear RNA and packaged in adeno-associated virus (AAV-U7-AON-5+6). Transduction of cardiac myocytes or systemic administration of AAV-U7-AON-5+6 increased Var-4 mRNA/protein levels and reduced aberrant mRNAs. Injection of newborn KI mice abolished cardiac dysfunction and prevented left ventricular hypertrophy. Although the therapeutic effect was transient and therefore requires optimization to be maintained over an extended period, this proof-of-concept study paves the way towards a causal therapy of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/terapia , Proteínas Portadoras/genética , Exones , Oligorribonucleótidos Antisentido/uso terapéutico , ARN Nuclear Pequeño/uso terapéutico , Adenoviridae/genética , Empalme Alternativo , Animales , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/fisiopatología , Técnicas de Sustitución del Gen , Terapia Genética , Células HEK293 , Corazón/fisiopatología , Humanos , Hipertrofia Ventricular Izquierda/prevención & control , Ratones , Mutación , Miocardio/metabolismo , Miocardio/patología , Oligorribonucleótidos Antisentido/administración & dosificación , Oligorribonucleótidos Antisentido/genética , Isoformas de Proteínas/genética , ARN Mensajero/genética , ARN Nuclear Pequeño/administración & dosificación , ARN Nuclear Pequeño/genética , Transducción Genética
8.
Cell Metab ; 15(1): 25-37, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22225874

RESUMEN

Adult skeletal muscles adapt their fiber size to workload. We show that serum response factor (Srf) is required for satellite cell-mediated hypertrophic muscle growth. Deletion of Srf from myofibers and not satellite cells blunts overload-induced hypertrophy, and impairs satellite cell proliferation and recruitment to pre-existing fibers. We reveal a gene network in which Srf within myofibers modulates interleukin-6 and cyclooxygenase-2/interleukin-4 expressions and therefore exerts a paracrine control of satellite cell functions. In Srf-deleted muscles, in vivo overexpression of interleukin-6 is sufficient to restore satellite cell proliferation but not satellite cell fusion and overall growth. In contrast cyclooxygenase-2/interleukin-4 overexpression rescue satellite cell recruitment and muscle growth without affecting satellite cell proliferation, identifying altered fusion as the limiting cellular event. These findings unravel a role for Srf in the translation of mechanical cues applied to myofibers into paracrine signals, which in turn will modulate satellite cell functions and support muscle growth.


Asunto(s)
Músculo Esquelético/patología , Comunicación Paracrina , Células Satélite del Músculo Esquelético/metabolismo , Factor de Respuesta Sérica/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Femenino , Vectores Genéticos/metabolismo , Hipertrofia , Interleucina-4/genética , Interleucina-4/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Ratones , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/fisiología , Factor de Respuesta Sérica/genética
9.
Nat Med ; 17(6): 720-5, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21623381

RESUMEN

Myotonic dystrophy is the most common muscular dystrophy in adults and the first recognized example of an RNA-mediated disease. Congenital myotonic dystrophy (CDM1) and myotonic dystrophy of type 1 (DM1) or of type 2 (DM2) are caused by the expression of mutant RNAs containing expanded CUG or CCUG repeats, respectively. These mutant RNAs sequester the splicing regulator Muscleblind-like-1 (MBNL1), resulting in specific misregulation of the alternative splicing of other pre-mRNAs. We found that alternative splicing of the bridging integrator-1 (BIN1) pre-mRNA is altered in skeletal muscle samples of people with CDM1, DM1 and DM2. BIN1 is involved in tubular invaginations of membranes and is required for the biogenesis of muscle T tubules, which are specialized skeletal muscle membrane structures essential for excitation-contraction coupling. Mutations in the BIN1 gene cause centronuclear myopathy, which shares some histopathological features with myotonic dystrophy. We found that MBNL1 binds the BIN1 pre-mRNA and regulates its alternative splicing. BIN1 missplicing results in expression of an inactive form of BIN1 lacking phosphatidylinositol 5-phosphate-binding and membrane-tubulating activities. Consistent with a defect of BIN1, muscle T tubules are altered in people with myotonic dystrophy, and membrane structures are restored upon expression of the normal splicing form of BIN1 in muscle cells of such individuals. Finally, reproducing BIN1 splicing alteration in mice is sufficient to promote T tubule alterations and muscle weakness, a predominant feature of myotonic dystrophy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Empalme Alternativo/fisiología , Fibras Musculares Esqueléticas/fisiología , Debilidad Muscular/genética , Distrofia Miotónica/genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Línea Celular , Exones/genética , Humanos , Ratones , Debilidad Muscular/fisiopatología , Distrofia Miotónica/fisiopatología , Proteínas Nucleares/fisiología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Supresoras de Tumor/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...